Index of Methods for the Examination of Waters and Associated Materials 1976–1992

Methods for the Examination of Waters and Associated Materials

This booklet contains an index of the methods for the examination of waters and associated materials in order of their respective ISBN numbers. There then follows an alphabetical listing of the more important parameters and topics covered in the published series.

© Crown copyright 1992
Applications for reproduction should be made to HMSO First published 1992

ISBN 0 11 752669 X

Within the Methods for the Examination of Waters and Associated Materials series are four-ring binders suitable for use in storing reports.

These are available from HMSO Price £4
(ISBN 0-11-7514373)

HMSO

Standing order service

Piaung a standing order with HMSO BOOKS enables a customer to receive other titles in this series automatically as published

This saves the time, trouble and expense of placing individual orders and avoids the problem of knowing when to do so

For detail, please write to HMSO BOOKS (PC 11C), Publications Centre, PO Box 276, London, SW8 BDT quoting reference X22 04 22

The standing order service also enables customers to receive automatically as published all material of timer choice which additionally saves extensive datalogue research. The scopic at a selectivity of the service has been extended by new techniques, and there are more than (3,6%) classifications to choose from A special leaflet describing the service in order her, be of tained on request.

Contents

About this booklet	4
Methods published in order of their respective ISBN numbers	5
Index of parameters and topics	15
Glossary of terms	55
Address for correspondence	56

About This Booklet

The Department of the Environment, in collaboration with various learned societies, has in the past issued volumes of methods for the analysis of water and sewage. These volumes inevitably took several years to complete and were partially out of date before being printed. The present methods are now published as a series of booklets, thus allowing for speedy replacement or revision.

The preparation of these methods and their continuous revision is the responsibility of the Standing Committee of Analysts. This Committee has currently nine working groups, each responsible for one section or aspect of the water quality cycle.

The working groups are:

- 1.0 General principles of sampling and accuracy of results
- 2.0 Microbiological methods
- 3.0 Empirical and physical methods
- 4.0 Metals and metalloids
- 5.0 General nonmetallic substances
- 6.0 Organic impurities
- 7.0 Biological methods
- 8.0 Sewage works control methods

and

9.0 Radiochemical methods

The committee is now managed and serviced by the Drinking Water Inspectorate.

The actual methods and reviews of the more important analytical techniques are produced, in co-operation with the working group and main committee, by panels of experts in appropriate fields. The development of methods is continuously progressing and in view of the number so far published, it was considered appropriate that an index be produced.

This booklet contains an index of the series of recommended methods for determining the quality of waters and associated materials and also of the reviews of the more important analytical techniques.

How to use this index

This index is divided into two parts. The first part contains a list in ISBN number order of titles of all methods and reviews so far published. The second part contains an alphabetical listing of the more important parameters and topics covered in the booklets. In both sections of the index, publications are identified by a Book Number and any subject identified in the alphabetical listing may be related to the relevant publication by referring to the Book Number in the ISBN listing. Where booklets are shown to be out of print, it is the intention, at a later date, to either reprint or revise with a further edition.

Every effort is made to prevent errors from occurring in the text. However, should any mistakes be found, please notify the Secretary.

Dr D WESTWOOD

Secretary

6 April 1992

Standing Committee of Analysts

Methods for the Examination of Waters and Associated Materials

Methods in order of ISBN Number

Book Number		ISBN No.
1	Emission Spectrophotometric Multielement Methods of Analysis for Waters, Sediments and other materials of interest to the Water Industry 1980	0117500151
2	Cadmium in potable waters by atomic absorption spectrophotometry 1976	0117511366 Out of print
3	Lead in potable waters by atomic absorption spectrophotometry 1976	0117511374 Out of print
4	Chemical oxygen demand (dichromate value) of polluted and waste waters 1977	0117512494 Out of print
5	Amenability of sewage sludge to anaerobic digestion 1977	0117512508 Out of print
6	The sampling and initial preparation of sewage and waterworks' sludge, soils, sediments and plant materials prior to analysis 1977	0117512516 Superseded by 89
7	Determination of the pH value of sludge, soil, mud and sediment; and lime requirement of soil 1977	0117512524 Out of print
8	Magnesium in waters and sewage effluents by atomic absorption spectrophotometry 1977	0117513121
9	Calcium in waters and sewage effluents by atomic absorption spectrophotometry 1977	011751313X
10	Mercury in waters, effluents, and sludges by flameless atomic absorption spectrophotometry 1978	0117513261
11	1ron in raw and potable waters by spectrophotometry (using 2, 4, 6 - tripyridyl - 1, 3, 5-triazine) 1977	011751327X
12	Manganese in raw and potable waters by spectrophotometry (using formaldoxime) 1977	0117513288 Out of print
13	Organochlorine insecticides and polychlorinated biphenyls in waters 1978	0117513733 Out of print

Book Number		ISBN No.
14	The measurement of Electrical Conductivity and the Laboratory Determination of the pH value of natural, treated and waste waters 1978	0117514284 Out of print
15	The determination of Material Extractable by Carbon Tetrachloride and of certain hydrocarbon oil and grease components in sewage sludge 1978	0117514365 Out of print
16	Dissolved oxygen in natural and waste waters 1979	011751442X
17	Arsenic in Potable and Sea Water by Spectrophotometry (Arsenomolybdenum Blue procedure) Tentative Method 1978	0117514519
18	Methods for Biological Sampling Handnet Sampling of Aquatic Benthic Macroinvertebrates 1978	0117514527
19	The Instrumental Determination of Total Organic Carbon, Total Oxygen Demand and Related Determinands 1979	0117514586
20	Atomic Absorption Spectrophotometry. An Essay Review 1979	0117514616
21	Determination of Volatile Fatty Acids in Sewage Sludge 1979	0117514624
22	The Analysis of Sludge Digester Gas 1979	0117514632 Out of print
23	Acid Soluble Aluminium in Raw and Potable Waters by Spectrophotometry (using Pyrocatechol Violet) 1979	0117514640 Out of print
24	Air Segmented Continuous Flow Automatic Analysis. An Essay Review 1979	0117514705 Out of print
25	General Principles of Sampling and Accuracy of Results 1980	0117514918 Out of print
26	Sulphate in Waters, Effluents and Solids 1979	0117514926 Superseded by 136
27	Chemical Disinfecting Agents in Waters and Effluents, and Chlorine Demand 1980	0117514934
28	Chromium in Raw and Potable Waters and Sewage Effluents 1980	0117515280
29	A Survey of Multielement and Related Methods of Analysis for Waters, Sediments and other materials of interest to the Water Industry 1980	0117515299
30	Ultra Violet and Visible Solution Spectrophotometry and Colorimetry 1980	0117515388

Book Number		ISBN No.
31	Zinc in Potable Waters by Atomic Absorption Spectrophotometry 1980	0117515418 Out of print
32	Copper in Potable Waters by Atomic Absorption Spectrophotometry 1980	0117515426
33	Bromide in Waters, High Level Titrimetric Method 1981	0117515434
34	Chloro- and Bromo- Tri Halogenated Methanes in Water 1980	0117515442 Out of print
35	Dissolved Potassium in Raw and Potable Waters 1980 (Tentative Methods)	0117515450
36	Dissolved Sodium in Raw and Potable Waters 1980 (Tentative Methods)	0117515469
37	Silicon in Waters and Effluents 1980	0117515574
38	Phosphorus in Waters, Effluents and Sewages 1980	0117515825
39	Boron in Waters, Effluents, Sewage and Some Solids 1980	0117515833 Out of print
40	Oxidised Nitrogen in Waters 1981	0117515930
41	Odour and Taste in Raw and Potable Waters 1980	0117515973 Out of print
42	Hydrazine in Waters Spectrophotometric Method 1981	011751599X
43	Total Hardness, Calcium Hardness and Magnesium Hardness in raw and potable waters by EDTA titrimetry 1981	0117516007
44	The Determination of Alkalinity and Acidity in Water 1981	0117516015 Out of print
45	Cobalt in Potable Waters 1981	0117516031
46	Nickel in Potable Waters 1981	011751604X
47	Analysis of Surfactants in Waters, Waste Waters and Sludges 1981	0117516058 Out of print
48	Ammonia in Waters 1981	0117516139 Out of print
49	Cadmium, Chromium, Copper, Lead, Nickel and Zinc in Sewage Sludges by Nitric Acid/AAS 1981	0117516155
50	Phenols in Waters and Effluents by Gas Chromatography, 4-aminoantipyrine and 3-methyl-2-benzothiazolinehydrazone 1981	0117516171 Out of print

Book Number		ISBN No.
51	Chloride in Waters, Sewage and Effluents 1981	0117516260
52	Quantitative Samplers for Benthic Macroinvertebrates in Shallow Flowing Waters 1980	0117516279
53	Pyrethrins and Permethrin in Potable Waters by Electron Capture Gas Chromatography 1981	0117516287
54	Biochemical Oxygen Demand 1981	0117516309 Superseded by 130
55	The Assessment of the Nitrifying Ability of Activated Sludge 1980 (Tentative Methods)	0117516554
56	Antimony in Effluents and Raw, Potable and Sea Waters by Spectrophotometry (using Crystal Violet) 1982 Tentative Method	0117516562 Out of print
57	Determination of Cation Exchange Capacity and Exchangeable Cations (including water soluble ions) in Soils, Related Materials and Sewage Sludge 1979	0117516570
58	Gas Chromatography, an Essay Review 1982	0117516589
59	The Determination of Alkali Extractable Organic Matter in Ash 1981	0117516597 Out of print
60	Organo-Phosphorus Pesticides in River and Drinking Water 1980 (Tentative Method)	0117516600
61	Assessment of Biodegradability 1981	0117516619
62	Fluoride in Waters, Effluents, Sludges, Plants and Soils 1982	0117516627
63	Methods for the Isolation and Identification of Salmonellae (other than Salmonella Typhi) from Water and Associated Materials 1982	0117516643 Out of print
64	Acute Toxity Testing with Aquatic Organisms 1981	0117516724
65	The Determination of Chlorophyll a in Aquatic Environments 1980	0117516740
66	The Bacteriological Examination of Drinking Water Supplies 1982 (Report 71)	0117516759
67	Gas Chromatographic and Associated Methods for the Characterization of Oils, Fats, Waxes and Tars 1982	0117516775

Book Number		ISBN No.
68	Silver in Waters, Sewages and Effluents by Atomic Absorption Spectrophotometry 1982	0117516783
69	Arsenic in potable waters by Atomic Absorption Spectrophotometry (Semi Automatic Method) 1982	0117516791
70	Molybdenum, especially in sewage sludges and soils by Spectrophotometry 1982	0117516805
71	Extractable Metals in soils, sewage sludge-treated soils and related materials 1982	0117516899
72	Formaldehyde, Methanol, and Related Compounds in raw, waste and potable waters 1982 (Tentative Methods)	0117516902 Out of print
73	Sulphide in Waters and Effluents 1983 Tentative Methods	0117517186
74	Sampling for Nonplanktonic Algae (Benthic Algae or Periphyton) 1982	0117517259
75	High Performance Liquid Chromatography, Ion Chromatography, Thin Layer and Column Chromatography of Water Samples 1983	0117517267
76	Iron and Manganese in Potable Waters by Atomic Absorption Spectrophotometry 1983	0117517275
77	The Determination of Hydrocarbon Oils in Waters by Solvent Extraction, Infra Red Absorption and Gravimetry 1983	0117517283 Out of print
78	Classical methods for the Characterization of Oils, Fats and Waxes by saponification, hydroxyl, iodine and acid values 1983	0117517291
79	Methods for Biological Sampling, Sampling of Benthic Macro-invertebrates in Deep Rivers 1983	0117517402 Out of print
80	Determination of Iodine, Iodate, Iodide and Traces of Bromide in Waters (Tentative Method) 1984	0117517607
81	Four Essay Reviews on applications of Radiation Measurement in the Water Industry 1984	0117517763
82	The Determination of Organochlorine Insecticides and Polychlorinated Biphenyls in Sewages, Sludges, Muds and Fish 1978 Organochlorine Insecticides and Polychlorinated Biphenyls in Water, an addition, 1984	0117517771

Book Number		ISBN No.
83	The Conditionability, Filterability, Settleability and Solids Content of Sludge 1984. A Compendium of Methods and Tests	0117517879
84	Methods of Biological Sampling, Sampling Macroinvertebrates in water supply systems 1983	0117517895
85	Methods of Biological Sampling A colonization sampler for collecting Macroinvertebrate Indicators of water quality in lowland rivers 1983	0117517909
86	Thin layer chromatographic characterization of Oils, Fats, Waxes and Tars 1983	0117517917
87	Urea in Waters 1984	0117518638
88	The Direct Determination of Biomass of Aquatic Macrophytes and Measurement of Underwater Light 1985	0117518832 Out of print
89	The Sampling and Initial Preparation of Sewage and Waterworks sludges, soils, sediments, plants and contaminated wildlife (2nd Edition) 1986	0117518859
90	Chlorophenoxy Acidic Herbicides, Trichloro- benzoic acid, Chlorophenols, Triazines and Glyphosate in Water 1985	0117518867 Out of print
91	Total Nitrogen and Total Phosphorus in Sewage Sludge. 1985	0117518883
92	Mercury in Waters, Effluent, Soils and Sediments etc (additional methods) 1985	0117519073
93	Methods for the Determination of Metals in Soils, Sediments, and Sewage Sludge, and Plants by Hydrochloric-Nitric Acid Digestion, with a note on the determination of Insoluble Metal Contents 1986	0117519081
94	Measurement of Alpha and Beta Activity of Water and Sludge Samples. The Determination of Radon-222 and Radium-226. The Determination of Uranium (including General X-ray Fluorescent Spectrometric Analysis) 1985-6	011751909X
95	Organophosphorus pesticides in Sewage Sludge; Organophosphorus pesticides in River and Drinking Water, an addition, 1985	011751912X

Book Number		ISBN No.
96	Chlorobenzenes in waters. Organochlorine Insecticides and PCBs in Turbid Waters Halogenated Solvents and Related Compounds in Sewage Sludge and Waters 1985	0117519138
97	Chemical Oxygen Demand (Dichromate Value) of Polluted and Waste Waters 1986 (Second Edition)	0117519154 Out of print
98	The Determination of Carbon Dioxide in Natural, Treated and Beverage Waters, with a supplement on Sampling Bottled and Canned Waters 1986	0117519278
99	Selenium in Waters 1984 Selenium and Arsenic in Sludges, Soils and Related Materials 1985 A note on the Use of Hydride Generator Kits 1987	0117519332 Out of print
100	Determination of Sulphite, Sulphur Dioxide, Thiosulphate and Thiocyanate, with notes on the determination of Total Sulphur and other Sulphur compounds 1985	0117519340
101	Material Extractable by Light Petroleum from Sewage Sludge (Tentative Method) 1985	0117519421
102	Determination of the Inhibitory effects of chemicals and Waste Water on the Anaerobic Digestion of Sewage Sludge 1986.	011751943X
103	Colour and Turbidity of Waters 1981	0117519553
104	The Sampling of Oils, Fats, Waxes and Tars, in aqueous and solid systems 1983	0117519561
105	Suspended, Settleable and Total Dissolved Solids in Waters and Effluents 1980	011751957X Out of print
106	Methods for assessing the Treatability of Chemicals and Industrial Waste Waters and their Toxicity to sewage treatment processes 1982	0117519596
107	The Permanganate Index and Permanganate Value Tests for Waters and Effluents 1983	011751960X
108	Methods for the Use of Aquatic Macrophytes for Assessing Water Quality 1985-6	0117520004
109	Lead and Cadmium in fresh Waters by Atomic Absorption Spectrophotometry. (2nd edition). A General Introduction to Electrothermal Atomization Atomic Absorption Spectrophotometry 1986	0117520039

Book Number		ISBN No.
110	Determination of very low concentrations of Hydrocarbons and Halogenated Hydrocarbons in Water 1984-5	0117520047
111	Lithium, Magnesium, Calcium, Strontium and Barium in Waters and Sewage Effluents by Atomic Absorption Spectrophotometry 1987	0117520160
112	Temperature Measurement for Natural, Waste and Potable Waters and other items of interest in the Water and Sewage Disposal Industry 1986	0117520179
113	The Determination of six Polynuclear Aromatic Hydrocarbons in Waters (with notes on the determination of other PAH) 1985	0117520322
114	Examining Biological Filters, Toxicity to Aerobic Bacteria, Effect of SRT and Temperature 1985-6	0117520373
115	Determination of Acrylamide monomer in Waters and Polymers 1987	011752039X
116	Acid Soluble Aluminium in Marine, Raw and Potable Waters (Second Edition) 1987	0117520403
117	Determination of Diquat and Paraquat in River and Drinking Waters. Spectrophoto- metric Methods (Tentative) 1987	0117520756
118	The Determination of Oils and Fats in Waste Water by Filtration, Solvent Extraction and Gravimetry 1987	0117520764
119	The Determination of Colour of Waters and Wastewaters. A supplement, 1988	0117520837
120	The Determination of pH in low ionic strength waters 1988	0117520845
121	Methods for Sampling Fish Populations in Shallow Rivers and Streams 1983	0117520853
122	The Determination of Twelve Trace Metals in Marine and other Waters by Voltammetry or AAS 1987	0117520861 Out of print
123	Antimony, Arsenic, Beryllium, Chromium, Cobalt, Copper, Gallium, Germanium, Indium, Nickel, Selenium, Silver, Thallium, Vanadium, and Zinc by Electrothermal AAS 1988	0117520950
124	The Determination of Microgram and Submicrogram Amounts of Individual Phenols in River and Potable Waters 1988	0117520993

Book Number		ISBN No.
125	The determination of Methane and other Hydrocarbon Gases in Water 1988	0117521280
126	Kjeldahl Nitrogen in Waters 1987	0117521299
127	The Determination of Carbamates, Thiocarbamates, Related Compounds and Ureas in Water 1987	0117521515
128	Analysis of Hydrocarbons in Waters – A Review, and An Ultra-Violet Fluorescence Spectrometric Method 1988	0117521701
129	The Assessment of Biodegradability in Anaerobic Digesting Sludge 1988	0117521914
130	5 Day Biochemical Oxygen Demand (BOD ₅) Second Edition 1988 (with Amendments to Dissolved Oxygen in Waters).	0117522120
131	Cyanide in Waters etc 1988	0117522198
132	Determination of Radioactivity in Water by Multinuclide Gamma Ray Spectrometry 1989	0117522201
133	The Tentative Identification of Volatilizable Organic Compounds by Linear Temperature Programmed Gas Chromatographic Retention Indices, with Notes on Other Methods for Identifying Organic Substances 1988	0117522228
134	Titrimetric Determination of Total and Bicarbonate Alkalinity and Volatile Fatty Acids in Sewage Sludge 1980/89	0117522252
135	The Determination of Formaldehyde, other Volatile Aldehydes, Ketones and Alcohols in Water 1988	011752235X
136	Sulphate in Waters, Effluents and Solids 1988 (2nd Edn.)	0117522406
137	Discrete and Air Segmented Automated Methods of Analysis including Robots An Essay Review (Second Edition) 1988	0117522546
138	Isolation and Identification of Giardia Cysts, Cryptosporidium Oocysts and Free Living Pathogenic Amoebae in Water etc 1989	0117522821
139	The Enumeration of Algae, Estimation of Cell Volume, and use in Bioassays 1990	0117523070
140	The Determination of Anions and Cations, Transition Metals, Other Complex Ions and Organic Acids and Bases in Water by Chromatography 1990	0117523313

Book Number		ISBN No.
141	Flow Injection Analysis An Essay Review and Analytical Methods 1990	0117523399
142	The Determination of Organic, Inorganic, Total and Specific Tin Compounds in Water, Sediments and Biota 1992	0117523607
*143	General Principles of Sampling Water and Associated Materials (2nd edition) with supplements. Estimation of Flow and Load 1992	011752364X
144	Use of Plants to Monitor Heavy Metals in Freshwaters 1991	0117523712
*145	Information on Concentration and Determination Procedures in Atomic Spectrophotometry 1992	0117523755
146	Determination of Synthetic Pyrethroid Insecticides in Water by Gas Liquid Chromatography 1992	0117523763
*147	Phosphorus and Silicon in Waters, Effluents and Sludges 1992	0117523771
148	Determination of the Adsorption Characteristics of Organic Test Substances in Sewage Treatment Processes (Tentative Method) 1992	0117524166
*149	Determination of the pH Value of Sludge, Soil, Mud and Sediment and the Lime Requirement of Soil (Second Edition) 1992	0117524174
150	Index of Methods for the Examination of Waters and Associated Materials 1976-1992	011752669X

(Items marked * will be published as soon as possible)

Standing Committee of Analysts

Methods for the Examination of Waters and Associated Materials

Alphabetical listing of subject

Subject	Description	Book Number Nu	Page
· ·	Description	Number Nu	moer
Acanthamoeba	provisional identification	400	4~
A 0 0 1 7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	of	138 25	17 49
Accuracy of results Accuraphthene	a review retention values for	113	39
Acetaldehyde	method for	135	12
Acetate	retention values in IC for	75	72
	see index for IC methods for	140	121
Acetic acid	retention values in IC for see fatty acids	75	73
Acetone	method for	135	12
Acetyl value	of oils	78	11
Acid chromous chloride	alternative for alkaline		
A at 1 and 1	pyrogallol	22	15
Acid value	of oils	78 44	18 31
Acidity Aconitate	titrimetric method for see index for IC methods for	140	121
Acrylamide monomer	HPLC-UV method for water	140	121
relyamide monomer	for	115	7
	HPLC-UV method for		
	polyelectrolytes for	115	11
	accuracy of analytical results	115	15
Actinides	reference to methods for	29	43
Actinium	reference to methods for	29	43
Adipate	retention values in IC for	75	72
Adipic acid	retention values in IC for	75	73
Adsorption characteristics	of test substances in sewage sludges	148	6
Air segmented continuous flow	sidages	170	U
methods	a review	24	4
	method for sulphate	26	36
	method for boron using		
	azomethine-H	39	15
	for total oxidized nitrogen or		
	nitrite	40	15
	method for alkalinity	44	24
	for anionic surface active material	47	12
	method for ammonia	48	29
	method for ammonia in sea		-/
	water	48	39
	method for chloride	51	29
	semi automatic AAS method		
	for arsenic	69	4
	acetylacetone method for	22	10
	formaldehyde	72	19
	methanol oxidation to formaldehyde	72	36
	method for iodine	80	5
	method for iodide	80	9
	method for iodate	80	9
	spectrophotometric method		
	for urea	87	14
	method for urea	87	21
	method for total nitrogen	0.	30
	and phosphorus	91	29
	method for ammonia and orthophosphate	91	39
	method for thiocyanate	100	39
	method for ammonia	126	39

Subject	Description	Book Number 1	Page Number
Air segmented continuous flow methods (cont)	method for cyanide	131	19
	2-aminoperimidine method for sulphate	136	24
	methylthymol blue method for sulphate	136 137	50 21
Aldicarb Aldrin	a review HPLC-UV method for retention values/packing	127	14
ANGIA	material for retention values for	13 82	15 16
	confirmatory procedure for EC-GC method for turbid	82	24
Algae	waters for collection and extraction of	96 65	18 15
	sampling for non-planktonic estimation of algal cell	74	4
	counts estimation of algal cell	139	7
All about a contract of a contract	volume use of algal bioassays	139 139	25 28
Aliphatic carboxylic acids Alkali extractable organic matter Alkali extractable total organic	see fatty acids determination in ash for	59	5
carbon Alkaline pyrogallol solution	determination of for absorbing oxygen	59 22	12 15
Alkalinity	air segmented continuous flow method	24 44	5 9
	units expressed in terms of titrimetric method using standard acid	44	10
	low range method for	44	19
	continuous flow method for standard solution titrimetric method for	44 44	24 26
	sludges for FIA for	134 141	7 44
Alkyl sulphates	see index for IC methods for	140	121
Alkyl sulphonates Alkylamines	see index for IC methods for see index for IC methods for	140 140	
Allethrin	retention values for	53	15
Alpha activity	determination of in water using a thick source	94	9
	method in sludges and sediments	94 94	
Alpha-HCH	retention values/packing		
	material for retention values for	13 82	
Alphacypermethrin	GC-EC method for	146	
Aluminium	reference to method of determination for	1	6
	element characteristics in		
	flame emission additional analytical	20 20	
	information	20	
	pyrocatechol violet method	23	
	standard solution accuracy of analytical results air segmented continuous	23 23	
	flow method	24	
	atomic absorption (review) reference to methods for dissolution of insoluble	29 29	
	residues of AAS/HC1-HNO ₃ digestion	9.	3 17
	method for sewages	9.	
	x-ray fluorescence method pyrocatechol violet method bromopyrogallol red	9. 11	6 9
	method lumogallion method	1 1 1 1	

Subject	Description	Book Number Nu	Page mber
Aluminium (cont)	using voltammetry emission and other methods	116 116	39 52
	reference to method of analysis for	122	12
	by cathodic stripping voltammetry cation exchange see index for IC methods for	122 140 140	81 108 121
	flow injection analysis atomic absorption	141 144	7 10
Aluminium salts Amblystegium riparium	wavelength data see settlement aids monitoring heavy metals by	*145 83	17 27
Amenability of sewage sludge	use of procedure for full test	144 5	18 7
Ammonia	procedure for rapid test standard solution distillation and titrimetric	5 48	8 7
	method for potentiometric method for spectrophotometric method	48 48	9 15
	for spectrophotometric method	48	21
	for continuous flow method for continuous flow method for	48 48	25 29
	sea waer spectrophotometric method	48	39
	for standard solution	87 87	5 9
	continuous method for standard solution spectrophotometric method	91 91	39 41
	for continuous flow method for FIA for	126 126 141	30 39 27
Ammoniacal nitrogen	see also ammonia air segmented continuous flow method	24	5
	reference to methods for titrimetric determination	29 40	43 10
Ammonium (ammonia and ammonium ions)	retention values in IC for see index for IC methods for	75 140	72 121
Amoebae	see index for IC methods for quaternary isolating and identifying free	140	124
Anion exchange resin Anionic surfactants	living preparation of see surfactants	138 47	6 62
Anodic stripping voltammetry	air segmented continuous flow method summary of	24 29	5 15
Anthracene Antimony	retention values for element characteristics in AAS	113	39 42
	additional analytical information reference to methods for	20 29	44 43
	crystal violet spectrophotometric method standard solution	56 56	4 8
	accuracy of analytical results commercial hydride generation methods	56 99	12 38
	reference to method of analysis for	122	12
	by EAAAS standard solution by EAAAS with	123 123	10 11
	palladium/magnesium nitrate	123	84

Subject	Description	Book Number Nu	Page mber
Argenticyanide	see index for IC methods for	140	121
Argon	reference to methods for	29	43
Arsenic Arsenic	see index for IC methods for arsenomolybdenum blue	140	121
Alseme	niethod for	17	4
	standard solution	17	10
	accuracy of analytical results	17	19
	element characteristics in	20	
	AAS	20	42
	additional analytical information	20	44
	reference to methods for	29	43
	AAS semi automatic method		
	for	69	4
	standard solution	69	7
	accuracy of analytical results dissolution of insoluble	69	15
	residues of	93	17
	in soils/sludges by hydride	, ,	• ,
	generation	99	23
	commercial hydride	0.0	
	generation methods	99	38
	reference to method of analysis for	122	12
	by EAAAS with	122	12
	palladium/magnesium		
	nitrate	123	84
Arsenite	see index for IC methods for	140	121
Aryl sulphanetes	see index for IC methods for see index for IC methods for	140 140	121 121
Aryl sulphonates Arylamines	see index for IC methods for	140	121
Astatine	reference to methods for	29	43
Aston cylinder sampler	description of	52	10
	for non-planktonic algae	74	22
Asulam	HPLC-UV method for	127	14
Atomic absorption spectrophotometry	determination of elements by	1	52
spectrophotometry	a review of	20	6
	types of flame used in	20	13
	interference effects in	20	22
	sample pretreatment	• •	
	techniques in	20	27
	cold vapour technique for mercury	20	29
	hydride generation	20	2)
	techniques	20	30
	element characteristics in	20	42
	summary of	29	20
	interference effects in useful wavelengths in	*145 *145	10 17
Atomic fluorescence	usciui wavelengins in	173	1 /
spectrophotometry	details of	1	13
	summary of	29	21
	useful wavelengths in	*145	17
Atrazine	methylation/NSD-GC method for	90	43
Auricyanide	see index for IC methods for	140	121
Aurocyanide	see index for IC methods for	140	121
Automatic analysis	see air segmented		
	continuous flow method		
Azide	see index for IC methods for	140	121
Azinphos ethyl	retention values for retention values for	60 95	11 13
Azinphos methyl	standard solution	60	6
	retention values for	60	11
	in sewage sludges by		
	FPD-GC	95	4
	retention values for	95	13
Bacteriological examination	see index in that volume	66	100
= = = = = = = = = = = = = = = = = = =	of drinking water supplies	66	
Barium	reference to method of		

Subject	Description	Book Number N	Page umber
Barium	reference to method of determination for	1	6
	element characteristics in AAS	20	42
	additional analytical	20	4.4
	information reference to methods for	20 29	44 43
	retention values in IC for dissolution of insoluble	75	72
	residues of	93	17
	AAS method for	111	26
	standard solution for see index for IC methods for	111 140	30 121
Barium chloride	preparation/standardisation		
	of 0.005M	26	19
	preparation/standardisation of 0.005M	136	16
Barium hydroxide	preparation/standardisation		
Beer-Lambert Law	of 0.125M equation for	61 1	55 43
Deer-ramoen raw	equation for	30	5
Bendiocarb	HPLC-UV method for	127	14
Benomyl	HPLC-UV method for	127	19
Benthic macroinvertebrates	sampling of sampling of	18 52	4 4
	sampling of	79	4
Benz(a)anthracene	retention values for	113	39
Benzene	retention values for	110	18
Benzene sulphonate	see index for IC methods for	140	121
Benzo(ghi)perylene	see polycyclic aromatic hydrocarbons	113	8
	retention values for	113	39
Benzo 3,4 pyrene	sec polycyclic aromatic		
	hydrocarbons retention values for	113 113	8 39
Benzo(b)fluoranthene	sec polycyclic aromatic	113	39
	hydrocarbons	113	8
•	retention values for	113	39
Benzo(e)pyrene Benzo(k)fluoranthene	retention values for see polycyclic aromatic	113	39
Benzo(k)ndoranthene	hydrocarbons	113	8
	retention values for	113	39
Benzoate	retention values in IC for	75	72
Benzoie acid	sec index for IC methods for retention values in IC for	140 75	121 73
Beryllium	reference to method of	,,,	7.5
•	determination for	1	6
	element characteristics in AAS	20	42
	reference to methods for	29	43
	by EAAAS	123	16
3	standard solution	123	19
Beta activity	determination of in water	94 94	8 25
	in sludges and sediments	94	67
Beta-HCH	retention values/packing		
	material for retention values for	13 82	
Bicarbonate	determination of	98	
Bicarbonate alkalinity	sec alkalinity		
Biodegradability	assessment of	61	6
	glossary of terms used in electrolytic respirometric	61	13
	method	61	17
	manometric method	61	24
	oxygen electrode	61	31
	respirometric method assessment of	01	31
	chemicals/effluents for	61	39
	respiration rate		20
	measurements	61	39

Subject	Description	Book Number Ni	
Biodegradability (cont)	manometric respirometric		,
riedeg, addonity (com)	assessments	61	47
	CO ₂ evolution (Sturm test) for	61	53
	modified OECD screening	-	
	test for static die-away test for	61 61	59 64
	modified co-metabolism		
	die-away test for continuous activated sludge	61	69
	test	61	73
	semi-continuous activated	61	73
	sludge test isolation of bacteria for	01	13
	testing for	61	99
Biological filters	assessment of examination of	129 114	7 6
Biochemical oxygen demand	see BOD		_
Biomass Bismuth	determination of element characteristics in	88	3
273114411	AAS	20	42
	additional analytical information	20	44
	reference to methods for	29	43
	titrimetric method for	47	33 35
	AAS method for EDTA spectrophotometric	47	33
	method for	47	36
	reference to method of analysis for	122	12
Block digesters	use of	91	49
DOD	use of	97	47
BOD	see also dissolved oxygen details of	54	4
	standard solution for	54	11
	reagents for review of	106 130	41 12
Borate	see index for IC methods for	140	121
Boric acid indicator solution Boron	preparation of element characteristics in	91	17
DOTOII	AAS	20	42
	additional analytical	20	4.4
	information reference to methods for	20 29	44 43
	standard solution	39	8
	curcumin spectrophotometric method	39	11
	continuous flow		
	method/azomethine-H azomethine-H	39	15
	spectrophotometric method	39	22
	mannitol titrimetric method	39	27
	pretreatment of sample dissolution of insoluble	39	30
	residues of	93	17
Bromide	see index for IC methods for reference to methods for	140 29	121 43
The mode	iodometric titration of		,
	bromate IC method for	33 62	4 33
	standard solution in IC for	75	69
	retention values in IC for	75	72
	retention values in IC for various methods for the	75	86
	determination of	80	12
	IC method for see index for IC methods for	136 140	45 121
Bromine	method for	27	26
Bromochloromethane	retention values for	34	15
Bromodichloromethane	retention values for see trihalomethanes	110	34
	retention values for	110	18

Subject	Description	Book Number 1	Page Number
Bromodichloromethane (cont)	GC-EC head space method	1.0	
	for GC-EC pentane extraction	110	19
	method for	110	24
2-Bromoethane sulphonate	retention values for see index for IC methods for	110 140	34 121
Bromoform	see trihalomethanes		121
	GC-EC head space method for	110	19
	GC-EC pentane extraction		
	method for retention values for	110 110	24 34
Bromophos	retention values for	60	11
Bromotrichloromethane	retention values for retention values for	95 34	13 15
	retention values for	110	34
Buffer solution	pH 7.0 pH 4.0	7 14	9 12
	pH 5.2	39	17
	pH 6.9 pH 9.2	44 44	13
	pH 4.0	44	13 13
	pH 4.0	44	21
	pH 6.9 pH 3.1	44 44	21 26
	pH 9.4	87	17
	pH 4.0 (primary standard) pH 4.0 (0.0001N acid)	120 120	10 10
.	pH 2.5	124	35
Burettes	note on accurate measurement using	100	9
Butan-2-one	method for	135	12
Butane Butanoate	GC-FID method for see index for IC methods for	125 140	7 121
Butylamines	see index for IC methods for	140	121
Butyrate	retention values in IC for	75	72
Butyric acid	see index for IC methods for retention values in IC for	140 75	121 73
C.I. Solvent Red 24	see identification of		
Cadmium	markers in gas oil	67	33
Cadinum	standard solution AAS on solvent extract using	2	6
	APDC	2	7
	element characteristics in AAS	20	42
	additional analytical		
	information reference to methods for	20 29	
	AAS method for sewage		
	sludge extractable by 0.05M EDTA	49	4
	from soil	71	5
	AAS/HC1-HNO ₃ digestion method for soils	93	8
	AAS/HC1-HNO ₃ digestion method in sewages	0.2	20
	EAAAS method for	93 109	-
	APDC-MIBK extraction and AAS	100	20
	reference to method of	109	28
	analysis for	122	12
	by anodic stripping voltammetry	122	14
	standard solution	122	
	in saline waters by APDC-AAS	122	101
	in saline waters by		
	APDC-AAS by EAAAS with	122	114
	palladium/magnesium		
	nitrate	123	84

Subject	Description	Book Number	Page Number
Cadmium <i>(cont)</i> Caesium	see index for IC methods for	140	121
Cacsium	reference to method of determination for element characteristics in	1	6
	AAS	20	42
	reference to methods for	29	43
	retention values in IC for dissolution of insoluble	75	72
	residues of	93	17
Calcium	see index for IC methods for reference to method of	140	121
	determination for preparation of 0.125M	1	6
	calcium chloride	7	5
	AAS method for	9	4
	standard solution	9	5
	Accuracy of analytical results element characteristics in AAS		10
	additional analytical	20	42
	information reference to methods for	20	44
	preparation for standard	29	43
	solution standard solution	43 57	
	AAS method for	57	16
	standard solution in IC	75	70
	retention values in IC for	7.5	72
	dissolution of insoluble residues of	93	17
	AAS/HC1-HNO ₃ digestion		
	method in sewages AAS method for	93 111	20 16
	standard solution for	111	18
Calabarata	see index for IC methods for	140	121
Calcium hardness	EDIA titration	43	11
Capillary suction time	accuracy of analytical results method for filterability of	43	18
Caprate	sludges see index for IC methods for	83 140	13
Caproate	see index for IC methods for	140	121 121
Caprylate	see index for IC methods for	140	121
Carbanate	HPLC-UV determination of	127	7
Carbaryl	HPLC-UV method for	127	7
	HPLC-UV method for TLC method for	127 127	19 21
Carbetamine	HPLC-UV method for	127	20
Carbon dioxide	method for determining	22	6
	removal of based on pH, CO ₂ and	61	55
	alkalinity values	98	11
	method by absorption and titration	98	15
	in pressurised bottled and canned waters	98	23
	absorption and manometric		
Carbon disulphide	analysis GC-FID method for	98 127	24 27
Carbon tetrachloride	retention values for	34	15
	distillation/extraction/GC method for	96	28
	GC-EC head space method for		
	GC-EC pentane extraction	110	19
	method for retention values for	110 110	
	material extractable in	110	34 4
Carbonate alkalinity	see alkalinity		7
Carbonates Carbonic acid	see index for IC methods for	140	
Carbonic acid Carbophenothion	retention values in IC for standard solution	75	
. ars epissassinon	retention values for	60 60	_
		00	1.1

Subject	Description	Book Number Ni	Poge umber
Carbophenothion (cont)	in sewage sludges by		
Caroophenounon (com)	FPD-GC	95	4
	Rf values for	95	13
	retention values for	95	13 17
Carboxylates	additional data for see index for IC methods for	95 140	121
Catechol	see phenol	50	14
Cation exchange capacity	method for	57	6
Cation exchange resin	use of	17	9
Cationic surfactants	preparation of see surfactants	26	12
Cerium	reference to method of		
	determination for	1	6
	reference to methods for	29	43
Chemical disinfecting agents	see total available chlorine see COD		
Chemical oxygen demand Chemical pretreatment	details of	1	9
.	techniques in AAS	20	27
	details of	29	10
	methods for silicon conversion	37	22
	for fluoride determinations	62	52
	of samples prior to analysis	*145	8
Chloramines	see total available chlorine		
Chlorate Chlorbufam	see index for IC methods for HPLC-UV method for	140 127	121 7
Chlordane	retention values/packing	127	,
	material for	13	15
60 A 6 A A	retention values for	82	16
Chlorfenvinphos	standard solution retention values for	60 60	6 11
	in sewage sludges by	00	11
	FPD-GC	95	4
	Rf values for	95	13
Chloride	retention values for air segmented continuous	95	13
Chloride	flow method	24	5
	reference to methods for	29	43
	silver nitrate titrimetric	٠.	,
	method mercuric nitrate titrimetric	51	6
	method	51	15
	potentiometric method	51	22
	continuous flow method for	51	29
	ion selective electrode method for	51	38
	IC method for	62	33
	standard solution in IC	75	69
	retention values in IC for	75	72
	retention values in IC for IC method for	75 136	86 45
	see index for IC methods for	140	121
	FIA for	141	36
Chlorine demand	method for	27	38
Chlorine dioxide Chlorine solution	method for preparation and	27	26
Chlorine solution	standardisation of	27	38
Chlorite	method for	27	26
Chloroaurates	see index for IC methods for see index for IC methods for	140 140	121 121
Chlorobenzene	capillary EC or FID GC	140	121
	method	96	6
	retention values for	96	10
Chlorobenzoates Chlorocresol	see index for IC methods for HPLC-electrochemical	140	121
Chlorociesor	detection method	124	25
Chlorodibromomethane	retention values for	110	18
Chloroferrates	see index for IC methods for	140	121
Chloroform	see trihalomethanes distillation/extraction/GC		
	method for	96	28
		, ,	= =

Subject	Description	Book Number Ni	
Chloroform (cont)	-		
Chlorotoriii (toni)	for GC-EC pentane extraction	110	19
	method for	110	24
Chloroisessamuratas			
Chloroisocyanurates 2-Chloro-6-methylphenol			
4-Chloro-2-methylphenol		50	14
4-Chloro-3-methylphenol	retention values for	124	53
4-Chloro-2-methylphenoxy acetic	see MCPA		
acid Chloropalladates	see index for IC methods for	140	121
2-Chlorophenol	see phenol	50	14
	GC-EC pentafluorobenzoyl		
		124	8
		124	25
		124	32
3-Chlorophenol	GC-EC pentafluorobenzoyl		
	ester method	124	8
A Cit is an investigation of			
4-Chlorophenol		30	14
	ester method	124	8
	HPLC-electrochemical		
	detection method	124	
Chlaranhull			
Chlorophyll			
Chloroplatinates	see index for IC methods for	140	121
Chloroplumbates	see index for IC methods for	140	121
Chlorpropham		127	7
Chlorpyrifos		60	6
		95	4
	Rf values for	95	13
Chromates	see index for IC methods for	140	121
Chromatographic methods			
		7.5	11
	HPLC	75	18
	types of chromatographic	2.5	20
	standard solutions in IC	75	69
	standard solutions in IC	7.5	70
Chromic acid cleaning solution			•
Chromium		103	11
Chroman	determination for	1	6
	element characteristics in		
		20	42
		20	44
	AAS method for	28	4
	standard solution	28	7
		30	1.2
	spectrophotometric method		
		28	
	reference to methods for	29	43
	AAS method for sewage	40	
		49	4
	method for soils	93	8
	dissolution of insoluble		
	residues of	93	17
		03	20
	GC-EC pentane extraction method for method for method for method for 27 26 see phenol 50 14 see phenol 60 124 8 see phenol 60 124 8 see phenol 70 124 32 see p		

Subject	Description	Book Number Ni	Page ımber
Chromium (cont)	reference to method of analysis for	122	12
	by coprecipitation with iron and EAAAS standard solution	122 122	120 123
	AAS method for total particulate by EAAAS	122 123	132 22
Chrysene	standard solution see index for IC methods for retention values for	123 140 113	25 121 39
Cinerin	see pyrethrins retention values for see index for IC methods for	53 140	15 121
Cladophora glomerata	monitoring heavy metals by use of see settlement aids	144	16
Coastal waters Cobalt	sampling element characteristics in	25	22
	AAS reference to methods for AAS method on MIBK	20 29	42 43
	extract standard solution AAS method for	45 45 45	4 6 12
	standard solution accuracy of analytical results	45 45	13 20
	retention values in IC for dissolution of insoluble residues of	75 93	72 17
	AAS/HC1-HNO3 digestion method in sewages reference to method of	93	20
	analysis for by cathodic stripping	122	12
	voltammetry by EAAAS standard solution	122 123 123	60 28 31
Cobalticyanides COD	see index for IC methods for see index for IC methods for procedure for testing for	140 140 4	121 121 9
	titration procedure spectrophotometric procedure	4	10 11
	air segmented continuous flow method method without mercury	24	5
Chrysene Cinerin Citrate Cladophora glomerata Coagulation Coastal waters Cobalt Cobalt	salts sampling, preservation and	97	5
	storage for notes on modifications to methods for	97 97	9 37
Colour	accuracy of analytical results suspension for adsorption of visual measurement of	97 51 103	49 9 5
	standard solutions for spectrophotometric method	103	8
Column chromatography	for CIELAB determination of see chromatographic	103 119	
Column packing materials	methods determination of use of	58 58	17
	of sewage and sludges of natural, treated and waste waters	83	4
	standard solutions for use of element characteristics in	14 25	
••	AAS air segmented continuous flow method	20 24	

Subject	Description	Book Number N	Page 'umber
Copper (cont)	reference to methods for	29	43
	AAS method	32 32	4 6
	standard solution AAS method for sewage	32	U
	sludge	49	4
	extractable by 0.05M EDTA from soil	71	5
	AAS/HC1-HNO3 digestion		
	method for soils dissolution of insoluble	93	8
	residues of	93	17
	AAS/HC1-HNO ₃ digestion method for sewages	93	20
	reference to method of		
	analysis for	122	12
	by cathodic stripping voltammetry	122	28
	in saline waters by	122	101
	APDC-AAS in saline waters by	122	101
	APDC-AAS	122	114
	by EAAAS	123	34
	by EAAAS with palladium/magnesium		
	nitrate	123	84
2.6 and	see index for IC methods for	140 50	121 15
2-Cresol	see phenol GC-EC pentafluorobenzoyl	30	13
	ester method	124	8
3-Cresol	HPLC-UV method for see phenol	124 50	32 15
3-616801	GC-EC pentafluorobenzoyl	30	1.5
	ester method	124	8
4-Cresol	HPLC-UV method for see phenol	124 50	32 15
4-6 (650)	GC-EC pentafluorobenzoyl	50	15
	ester method	124	8
Crufomate	HPLC-UV method for retention values for	124 60	32 11
	retention values for	95	13
Cryptosporidium oocysts	methods for isolating and identifying	138	6
Cuprocyanide	see index for IC methods for	140	121
Cyanate	see index for IC methods for	140	121
Cyanide	air segmented continuous flow method	24	5
	reference to methods for	29	43
	standard solution	131 131	7 9
	potentiometric method for colorimetric method for	131	17
	continuous flow method for	131	19
	diffusion of HCN and colorimetric method	131	26
	advice on determination of	151	20
	total cyanide	131	36
	in sludges and soils accuracy of analytical results	131 131	
	see index for IC methods for	140	
Cyanoargentate Cyanoaurate	see index for IC methods for see index for IC methods for	140 140	
Cyanocobaltate	see index for IC methods for	140	
Cyanocuprate	see index for IC methods for	140	
Cyanoferrate Cyanonickelate	see index for IC methods for see index for IC methods for	140 140	
Cyanopalladate	see index for IC methods for	140	122
Cyanoplatinate	see index for IC methods for	140	
Cyclohexylamine Cyfluthrin	see index for IC methods for GC-EC method for	140 140	
y		• • • •	•

2,4-D Dalapon	EC-GC method for pentafluorobenzyl	90	7
Dalapon			
Dalapon	ester/EC-GC method	90	23
Dalapon	GC-MS confirmation of	90	30
	EC-GC method for	90	7
Decane	retention values for	110	18
Decay series	tables of	94	12
Delta-HCH	retention values/packing		
	material for	13	15
	retention values for	82	16
Deltamethrin	GC-EC method for	146	7
Demeton	retention values for	60	11
	retention values for	95	1.3
Demeton-S-methyl	retention values for	60	11
TS - 4 - 6 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	retention values for	95	13
Demeton-S-methyl sulphone	retention values for	60	11
The standard	retention values for	95	1.3
Detectors	details of UV details of UV	30 30	1 : 1 8
		30	1 (
	types of-for use in	58	2
	chromatography	30	2.
	detection systems used in HPLC	75	13
	in IC	75 75	6:
	information on electron	15	0.
	capture	81	2
Detergents	see surfactants	01	2
Dialkyldithiocarbamate	GC-FID method for	127	2
Diaminoethane	see index for IC methods for	140	12
Diazinon	retention values for	60	1
	Rf values for	95	î
	retention values for	95	1
Dibenz(a,h)anthracene	retention values for	113	3
Dibrom	retention values for	60	1
	retention values for	95	1
Dibromoacetate	see index for IC methods for	140	12
Dibromochloromethane	see trihalomethanes		
	GC-EC head space method		
	for	110	1
	GC-EC pentane extraction		
	method for	110	2
	retention values for	110	3
1,2-Dibromoethane	distillation/extraction/GC		
	method for	96	- 2
Dicamba	EC-GC method for	90	
	pentafluorobenzyl		
	ester/EC-GC method	90	- 2
Dichloramine	see total available chlorine		
1,2-Dichlorobenzene	capillary EC or FID GC	0.6	
	method	96	
	retention values for	96	
1,4-Dichlorobenzene	capillary EC or FID GC	0.6	
	method retention values for	96 96	
Dichloroethane	retention values for	34	
1,2-Dichloroethane	GC-EC pentane extraction	24	
1,2-17ichloroethane	method for	110	
	retention values of	110	
1,1-Dichloroethylene	GC-EC head space method	110	
1,1 12 cmoroccinytene	for	110	
	GC-EC pentane extraction		
	method for	110	
Dichlorofenthion	retention values for	60	
	retention values for	95	
Dichloromethane	retention values for	34	
	distillation/extraction/GC		
	method for	96	
	GC-EC pentane extraction		
	method for	110	
	retention values for	110	
3,6-Dichloro-2-methoxybenzoic	see dicamba		

Subject	Description	Book Number Ni	Page ımber
Dichlorophenol	see phenol	50	14
2,3-Dichlorophenol	HPLC-UV method for	124	32
2,4-Dichlorophenol	see phenol GC-EC pentafluorobenzoyl	50	14
	ester method HPLC-electrochemical	124	8
	detection method	124	25
	HPLC-UV method for	124	32
2,5-Dichlorophenol	retention values for HPLC-UV method for	124 124	53 32
2,6-Dichlorophenol	see phenol	50	14
	HPLC-electrochemical		
	detection method HPLC-UV method for	124 124	25 32
3,5-Dichlorophenol	HPLC-UV method for	124	32
2,4-Dichlorophenoxy acetic acid	see 2,4-I)		
Dichlorprop Dichloryos	retention values for standard solution	90 60	25
Dictiorvos	retention values for	60	6 11
	in sewage sludges by		••
	FPD-GC	95	4
Dieldrin	retention values for retention values/packing	95	13
Dictorn	material for	13	15
	retention values for	82	16
	confirmatory procedure for EC-GC method for turbid	82	23
	waters for	96	18
Diesel oil	method relating to analysis	,,	
150 At 1 1 2	of	128	32
Diethylamine Dimefox	see index for IC methods for retention values for	140 60	122 11
Dimerox	retention values for	95	13
	Rf values for	95	13
Dimethoate	standard solution	60	6
	retention values for in sewage sludges by	60	11
	FPD-GC	95	4
	Rf values for	95	13
Dimethylamine	retention values for see index for IC methods for	95 140	13 122
2,4-Dimethylphenol	retention values for	124	53
2,4-Dinitrophenol	retention values for	124	53
Dinocap Diquat	HPLC-UV method for ion exchange-UV method	127	19
Diquat	for	117	7
Dissociation constants	of organic/inorganic acids	_	
Dissolved overen	and bases	140 16	26 4
Dissolved oxygen	solubility of titrimetric method for	10	4
	determining	16	6
	instrumental method for	1.6	1.4
	determining method for	16 130	14 32
Disulfoton	retention values for	60	11
*	retention values for	95	13
Dithiocarbamate Dithionate	GC-FID method for see index for IC methods for	127 140	27 122
Dithionite	see index for IC methods for	140	122
Diuron	HPLC-UV method for	127	14
Decondorff regent (modified)	TLC method for	127 47	21 30
Dragendorff reagent (modified) Dysprosium	preparation of reference to method of	47	.50
o y of the state of	determination for	1	6
EAAAS	review of	109	7
EDTA	useful wavelengths in preparation of 0.01M	*145	17
1/1/1/1	solution	26	11
	preparation/standardisation		
	of 0.01M	43	8

Subject	Description	Book Number N	Page umber
EDTA (cont)	standardisation of 0.01M		
TIMA (Com)	solution	43	14
	preparation of 0.05M		
	ammonium salt	71	7
Electrical conductivity	see index for IC methods for	140	122
Elodea canadensis	see conductivity monitoring heavy metals by		
Trout a Canade (1813	use of	144	22
Emission spectrophotometry	review of	1	13
	summary of	29	22
Endosulphan A	retention values/packing material for	13	15
	retention values for	82	16
Endosulphan B	retention values/packing		
	material for	13	15
The diffe	retention values for	82	16
Endrin	retention values/packing material for	13	15
	retention values for	82	16
	confirmatory procedure for	82	23
Enteromorpha flexuosa	monitoring heavy metals by		
t back	use of	144	17
EPTC	HPLC-UV method for HPLC-UV method for	127 127	7 19
Erbium	reference to method of	127	.,
	determination for	1	6
Ethane	GC-FID method for	125	7
Ethanolamine	see index for IC methods for	140 60	122 11
Ethion (Diethion)	retention values for Rf values for	95	13
	retention values for	95	13
Ethoate-methyl	retention values for	60	11
•. • • •	retention values for	95	13
Ethyl benzene Ethylamine	retention values for see index for IC methods for	110 140	18 122
3-Ethylphenol	see phenol	50	15
4-Ethylphenol	see phenol	50	15
Europium	reference to method of		
	determination for	1	6
Exchangeable cations	reference to methods for	29	43
exchangeable carions	see cation exchange capacity method for	57	10
Extraction efficiency	correction for	96	27
Fats	see oils		
Fatty acids	GC method for determining	21	6
•	average composition of		
	various	67	22
	titrimetric method for sludges for	134	7
Fenchlorphos	retention values for	60	11
	retention values for	95	13
Fenitrothion	standard solution	60	6
	retention values for	60	11
	in sewage sludges by + FPD-GC	95	4
	Rf values for	95	13
	retention values for	95	13
Fenpropathrin	GC-EC method for	146	7
Fenvalerate	see sumicidin	1.46	7
Ferbam	GC-EC method for GC-FID method for	146 127	7 27
Ferricyanide	see index for IC methods for	140	
Ferrocyanide	see index for IC methods for	140	
Ferrous ammonium sulphate	preparation/standardisation		_
	of 0.02083M	4	8
	preparation/standardisation of 0.00282M	27	17
	preparation/standardisation	21	1 /
	of 0.025M	59	7
	preparation/standardisation of 0.025M	97	13
	01 0.023NI	91	13

Subject	Description	Book Number Ni	Page umber
Filterability Fish populations Flame photometry	of sludges sampling determination of elements	83 121	13 10
Flocculation	by summary of see settlement aids	1 29	52 22
Flora	typing of rivers according to their	108	75
Flow Injection Analysis	turbidimetric method for sulphate a review	136 141	32 7
	spectrophotometric method for nitrate	141	27
	spectrophotometric method for ammonia spectrophotometric method	141	27
	for nitrite spectrophotometric method	141	32
	for phosphate spectrophotometric method for chloride	141 141	34
	spectrophotometric method for silicate	141	36 38
	spectrophotometric method for sulphate	141	40
	spectrophotometric method for hardness spectrophotometric method	141	42
Fluoranthene	for alkalinity see polycyclic aromatic	141	44
	hydrocarbons retention values for	113 113	8 39
Fluorene	retention values for	113	39
Fluoride	standard solution	23	9
	air segmented continuous flow method reference to methods for ion selective electrode	24 29	5 43
	method for standard solution	62 62	9 12
	eriochrome cyanine spectrophotometric method lanthanum alizarin fluorine	62	17
	blue method standard solution	62	19
	IC method for	62 62	19 24
	standard solution	62	24
	standard solution in sewage sludge by acid	62	29
	extraction as total fluorine in sewage	62	38
	sludge	62	44
	accuracy of analytical results standard solution in IC	62 75	73 69
	retention values in IC for	75	72
	retention values in IC for IC method for	75 136	86 45
	see index for IC methods for	140	122
Huoroborate	see index for IC methods for	140	122
Fluorophosphate Fly traps	see index for IC methods for preparation of sticky grease for	140 114	122 19
Fontinalis antipyretica	monitoring heavy metals by	114	19
Formaldehyde	use of acetylacetone	144	18
•	spectrophotometric method preparation/standardisation	72	8
	of solution continuous flow method for	72 72	10 19
	HPLC determination of	135	6
	preparation/standardisation of	135	8

Subject	Description	Book Number N	Page 'umber
Formate	retention values in IC for	75	72
	see index for IC methods for	140	122
Formazin standards	use of	103	18
Formic acid Formothion	retention values in IC for retention values for	75 60	73 11
Formotition	retention values for	95	13
Francium	reference to methods for	29	43
Free chlorine	see total available chlorine		
Fumarate	see index for IC methods for	140	122
Furfuraldehyde	see identification of markers in gas oil	67	33
		0.	
Gadolinium	reference to method of determination for	1	6
	reference to methods for	29	43
Galacturonate	see index for IC methods for	140	122
Gallium	element characteristics in		
	AAS	20	42
	reference to methods for reference to method of	29	43
	analysis for	122	12
	by EAAAS	123	40
	see index for IC methods for	140	122
Gamma activity Gamma-HCH (Lindane)	determination of	94	9
Gaillitia-ric ri (Eilliualie)	retention values/packing material for	13	15
	retention values for	82	16
	confirmatory procedure for	82	24
	EC-GC method for turbid	96	18
Gas chromatography	waters for a review	58	5
Cous emoniatography	LTPRI	133	8
	tables of substances with		
Carall	LTPRI values	133	26
Gas oil Germanium	method relating to analysis of reference to methods for	128 29	32 43
Germaniani	dissolution of insoluble	2)	4.5
	residues of	93	17
	commercial hydride	0.0	• •
	generation methods reference to method of	99	38
	analysis for	122	12
	by EAAAS	123	46
	standard solution	123	49
Giardia cysts	methods for isolating and	138	6
Gluconate	identifying see index for IC methods for	140	122
Glucuronate	see index for IC methods for	140	122
Glutarate	retention values in IC for	75	72
Glutaric acid	retention values in IC for	75	73
Glycollate	retention values in IC for see index for IC methods for	75 140	72 122
Glycollic acid	retention values in IC for	75	73
Glyphosate	ion exchange/reverse phase		
6.11	HPLC method	90	37
Gold	element characteristics in AAS	20	42
	reference to methods for	29	
	see index for IC methods for	140	122
Grease	sec hydrocarbon oils	2.5	2.2
Groundwaters Guaiacol	sampling see phenol	25 50	
	-	50	,
Hafnium	reference to method of		_
	determination for reference to methods for	1 29	-
Halogenated hydrocarbons	GC-EC head space method	27	7.7
,	for	110	19
	GC-EC pentane extraction	110	
	method for see also individual named	110	24
	substances		
	halogenated solvents	96	5 28

Subject	Description	Book Number N	Page
Hardness, calcium	EDTA titration	43	11
Trai one 35, Calcium	accuracy of analytical results	43	18
Hardness, magnesium	EDTA titration	43	17
Hardness, total	EDTA titration	43	5
Hazen units for colour	accuracy of analytical results standard solutions for	43 103	18 8
Helium	reference to methods for	29	43
Heptachlor	retention values/packing		
	material for retention values for	13	15
Heptachlor epoxide	retention values for retention values/packing	82	16
	material for	13	15
	retention values for	82	16
Heptane	confirmatory procedure for retention values for	82	23
Hess-Waters sampler	description of	110 52	18 11
Hexachlorobenzene	retention values for	82	16
	EC-GC method for	96	11
Hexamine	standard solution	96	13
Hexanesulphonate	see formaldehyde see index for IC methods for	140	122
High performance liquid	see chromatographic	140	122
chromatography	methods		
Holmium	reference to method of		
Hydrated lime	determination for see settlement aids	1	6
Hydrazine	spectrophotometric method	83	27
•	for	42	4
	standard solution	42	6
Hydride generation techniques	see index for IC methods for	140	122
riyonde generation techniques	details of arsenic and selenium in	20	30
	soils/sludges by	99	23
Hydrocarbons	GC-FID determination in		2.2
	water of	110	4
	in waters by extraction/UV fluorescence	128	
Hydrocarbon gases	GC-FID method for	125	6 7
Hydrocarbon oils	method for determination of	15	4
	extraction and IR		
	determination of extraction and gravimetric	77	6
	analysis of	77	15
	extractable by petroleum		• •
Hudaoshlosia asid	ether (40-60)	101	6
Hydrochloric acid	preparation/standardisation of 1.00N	2.7	7
	preparation/standardisation	37	7
	of 0.02N	44	12
	preparation/standardisation		
	of 0.1N preparation/standardisation	44	20
	of 0.1N	98	16
Hydrogen	method for gas	,,	10
11.3	determination	22	6
Hydrogen sulphide Hydroxide alkalinity	method for determining	22	6
Hydroxybutyrate	see alkalinity see index for IC methods for	140	122
Hydroxycarboxylates	see index for IC methods for	140	122
Hydroxyethylmethacrylate	see index for IC methods for	140	122
Hydroxyl value Hydroxylamine	of oils	78	11
Hydroxyvalerate	see index for IC methods for see index for IC methods for	140 140	122 122
Hypochlorite	see index for IC methods for	140	122
Hypophosphite	see index for IC methods for	140	122
ICP spectrometry	useful wavelengths in	*145	17
Imhoff cone	method for settleable solids	105	24
Indeno(1,2,3-cd)pyrene	see polycyclic aromatic		0
	hydrocarbons retention values for	113 113	8 39
	retention values for	113	37

Subject	Description	Book Number N	Page umber
Indium	element characteristics in		
	AAS reference to methods for reference to method of	20 29	42 43
	analysis for	122	12
And as fall (O) ass	by EAAAS	123	52
Industrial effluents	sampling assessment of	25	24
	biodegradability	61	39
	assessment of—to toxicity to sewage	106	6
	inhibitory effects of	106	45
Instrumental methods Iodate	summary of automated method for	29 80	7 9
Todate	see index for IC methods for	140	122
lodide	reference to methods for	29	43
	automated method for see index for IC methods for	80 140	9 122
lodine	method for	27	26
	automated spectrophotometric method		
	for	80	5
	standard solution	80	6
lodine value lodofenphos	of oils retention values for	78 60	15 11
roderenphos	retention values for	95	13
lon chromatography	see chromatographic		
	methods method for fluoride	62	24
	method for phosphate	62	33
	method for bromide	62 62	33
	method for chloride method for nitrite	62	33 33
	method for nitrate	62	33
	method for sulphate method for sulphate	62 136	33 40
	method for fluoride	136	45
	method for nitrate	136	45
	method for chloride method for bromide	136 136	45 45
	method for nitrite	136	45
	method for phosphate	136	45
	glossary of terms relevant to detectors used in	140 140	14 24
Ion selective electrodes	summary of	29	17
	method for nitrate method for chloride	40 51	42 38
	method for fluoride	62	9
	method for sulphide	73	18
	method for carbon dioxide method for cyanide	98 131	22 9
Iridium	reference to methods for	29	43
Iron	2,4,6-tripyridyl-1,3,5-triazine method	11	4
	standard solution	11	7
	element characteristics in	•	
	AAS additional analytical	20	42
	information	20	44
	air segmented continuous flow method	24	5
	reference to methods for	29	
	retention values in IC for	75	72
	AAS method for standard solution	76 76	
	accuracy of analytical results	76	
	AAS/HC1-HNO ₃ digestion method for soils	93	c.
	dissolution of insoluble	93	8
	residues of	93	17
	AAS/HC1-HNO ₃ digestion method for sewages	93	20
	Lor be waden	73	20

Iron (cont)			Book	Page
Second Stripping 122 12 12 12 13 14 13 12 14 13 12 14 13 14 13 14 14 14 14	Subject	Description	Number N	umber
by cathodic stripping voltammetry see index for IC methods for ferric see index for IC methods for ferrous see index for IC methods for ferrous see index for IC methods for ferrous see index for IC methods for see index for IC methods for see index for IC methods for subsubstylamine see index for IC methods for subsubstylamine see index for IC methods for see index for IC methods for subsubstylamine subsubstylamine see index for IC methods for subsubstylamine subsubstylamine see index for IC methods for subsubstylamine subsubstylami	Iron (cont)		122	12
Sec index for IC methods for ferric 140 122		by cathodic stripping	122	
Ferric See index for IC methods for Ferrous See index for IC methods for Ferrous See index for IC methods for It			122	91
Ferrous See index for IC methods for 140 122			140	122
Sec index for IC methods for 140 122				
Innerestate See settlement aids Sa 27				
Sobutsfamine See index for IC methods for 140 122	Iron salts			
Secintate Sec index for IC methods for 140 122				
See index for IC methods for see index for IC methods for see index for IC methods for solvent extract using APDC seement characteristics in AAS and solvent extract using APDC seement characteristics in AAS method for seement characteristics in AAS method for seement seemen				
Retoglutarate See index for IC methods See index for IC methods See integern See introgern See introgern See integern See index for IC methods See introgern See introgern See index for IC methods for See index for IC methods	Isopropylamine	see index for IC methods for	140	122
Retoglutarate See index for IC methods See index for IC methods See integern See introgern See introgern See integern See index for IC methods See introgern See introgern See index for IC methods for See index for IC methods	lasmolin	ega nyrathrine		
Signature See nitrogen New York See nitrogen New York See nitrogen New York See nearing of See See Nitrogen See nitrogen See nitrogen See nitrogen See nitrogen See nides for IC methods for 140 123 124 124 125 126 1	odsirioiiii		53	15
Kovats indices meaning of reference to methods for retention values in IC for reference to method of determination for reference to method of reference to method of reference to method of reference to method for solvent extract using APDC relement characteristics in AAS on solvent extract using APDC relement characteristics in AAS on solvent extract using reference to method for solvent reference to methods for reference to method for sewage sludge sludge restractable by 0.05M EDTA from soil reference to method for sowage sludge residues of AAS/HC1-HNO3 digestion method for soils dissolution of insoluble residues of AAS/HC1-HNO3 digestion method for sowages pade of reference to method of reference to method for sowages pade reference to met			140	122
Lactate			58	32
Sec index for IC methods for retention values in IC for retention for reference to methods for reference to method of determination for reference to method of determination for reference to method for laurate sec index for IC methods for retention reference to methods for reference to methods for reference to methods for reference to method for sewage sludge retractable by 0.05M EDTA from soil retention rete		reference to methods for		
Sec index for IC methods for retention values in IC for retention for reference to methods for reference to method of determination for reference to method of determination for reference to method for laurate sec index for IC methods for retention reference to methods for reference to methods for reference to methods for reference to method for sewage sludge retractable by 0.05M EDTA from soil retention rete				
Lactic acid retention values in IC for sampling 75 73 Lakes sampling 25 21 Lanthanides reference to methods for see index for IC methods for teference to method of determination for determination for see index for IC methods for tend to see index for IC methods for tend determination for see index for IC methods for tend determination for see index for IC methods for tend determination should be determed the form of the following determination for tend determination for see in see in see for see fo	Lactate			
Lanthanides	Lactic acid			
Lanthanum				
Lanthanum	Lanthanides			
Laurate See index for IC methods for standard solution 3 6	Lanthanum	reference to method of		120
Standard solution	Laurata			
AAS on solvent extract using APDC element characteristics in AAS additional analytical information 20 44 reference to methods for 29 43 AAS method for sewage sludge 49 4 extractable by 0.05M EDTA from soil 71 5 AAS/HC1-HNO3 digestion method for soils 93 8 dissolution of insoluble residues of 93 17 AAS/HC1-HNO3 digestion method for sewages 93 20 EAAS method for 109 18 APDC-MIBK extraction and AAS and AAS method for 109 18 APDC-Chlorofluoroethane AAS method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 1 interequirement 123 84 see index for IC methods for 140 123 15 soil 110 123 17 18 of soil 110 123 17 18				
element characteristics in AAS 20 42 additional analytical information 20 44 reference to methods for 29 43 AAS method for sewage sludge 49 4 extractable by 0.05M EDTA 71 5 AAS/HC1-HNO3 digestion method for soils 93 8 dissolution of insoluble residues of 93 17 AAS/HC1-HNO3 digestion method for sewages 93 20 EAAAS method for 109 18 APDC-MIBK extraction and AAS method for sewages 93 20 EAAAS method for 109 18 APDC-chlorofluoroethane AAS method 109 40 reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 I interequirement of soil 7 8 of soil *149 13		AAS on solvent extract using	•	-
AAS additional analytical information 20 44 reference to methods for 29 43 AAS method for sewage sludge 49 4 extractable by 0.05M EDTA from soil 71 5 AAS/HC1-HNO3 digestion method for soils 93 8 dissolution of insoluble residues of 93 17 AAS/HC1-HNO3 digestion method for sewages 93 20 EAAAS method for 109 18 APDC-MIBK extraction and AAS 109 28 APDC-chlorofluoroethane AAS method 109 40 reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 I interequirement of soil 7 8			3	7
information 20 44 reference to methods for 29 43 AAS method for sewage sludge 49 4 extractable by 0.05M EDTA from soil 71 5 AAS/HC1-HNO3 digestion method for soils 93 8 dissolution of insoluble residues of 93 17 AAS/HC1-HNO3 digestion method for sewages 93 20 EAAS method for 109 18 APDC-MIBK extraction and AAS 109 28 APDC-chlorofluoroethane AAS method 109 40 reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesiuni nitrate 123 84 see index for IC methods for 140 123 I inic requirement of soil 7 8 of soil 7 8			20	42
reference to methods for AAS method for sewage sludge extractable by 0.05M EDTA from soil 71 5 AAS/HC1-HNO3 digestion method for soils dissolution of insoluble residues of 93 17 AAS/HC1-HNO3 digestion method for sewages 93 20 EAAAS method for sewages 93 20 EAAAS method for 109 18 APDC-MIBK extraction and AAS 109 28 APDC-chlorofluoroethane AAS method 109 40 reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 I interequirement of soil 7 8 8 of soil 140 123			20	4.4
AAS method for sewage sludge		-		
extractable by 0.05M EDTA from soil AAS/HC1-HNO3 digestion method for soils dissolution of insoluble residues of AAS/HC1-HNO3 digestion method for sewages EAAAS method for and AAS APDC-MIBK extraction and AAS APDC-chlorofluorocthane AAS method reference to method of analysis for by anodic stripping voltammetry 122 14 standard solution in saline waters by APDC-AAS APDC-A				
from soil AAS/HC1-HNO3 digestion method for soils dissolution of insoluble residues of AAS/HC1-HNO3 digestion method for soils AAS/HC1-HNO3 digestion method for sewages PAAS method for AAS/HC1-HNO3 digestion method for sewages PAPDC-MIBK extraction and AAS APDC-entity of the sewages APDC-chlorofluorocthane AAS method reference to method of analysis for analysis			49	4
method for soils dissolution of insoluble residues of 93 17 AAS/HC1-HNO3 digestion method for sewages 93 20 EAAAS method for 109 18 APDC-MIBK extraction and AAS 109 28 APDC-chlorofluoroethane AAS method 109 40 reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 I inte requirement of soil 7 8		from soil	71	5
dissolution of insoluble residues of AAS/HC1-HNO3 digestion method for sewages 93 20 EAAAS method for 109 18 APDC-MIBK extraction and AAS 109 28 APDC-chlorofluoroethane AAS method 109 40 reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 2 123 84 see index for IC methods for 140 123 I interrequirement of soil 7 8 of soil *149 13			0.2	0
residues of AAS/HC1-HNO3 digestion method for sewages EAAAS method for and AAS APDC-MIBK extraction and AAS APDC-chlorofluoroethane AAS method AAS method analysis for analysis for by anodic stripping voltammetry voltammetry 122 14 standard solution in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesiuni nitrate 123 144 151 161 161 175 184 184 185 184 184 185 185 184 185 185 185 185 185 185 185 185 185 185			93	0
method for sewages		residues of	93	17
EAAAS method for APDC-MIBK extraction and AAS 109 28 APDC-chlorofluoroethane AAS method 109 40 reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 I interrequirement of soil 7 8 of soil *149 13			03	20
and AAS APDC-chlorofluoroethane AAS method reference to method of analysis for analysis for by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 see index for IC methods for 123 1 inte requirement 123 1 inte requirement 123 1 inte requirement 123 1 interequirement 124 125 126 127 128 129 129 120 120 121 121 123 123 124 125 125 126 127 128 129 129 120 120 120 121 121 123 124 125 125 126 127 127 128 129 129 120 120 120 120 120 120 120 120 120 120		EAAAS method for		
APDC-chlorofluoroethane			100	20
reference to method of analysis for 122 12 by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 I ime requirement of soil 7 8 of soil *149 13			109	20
analysis for by anodic stripping voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 114 of soil 124 13			109	40
voltammetry 122 14 standard solution 122 17 in saline waters by APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 I ime requirement of soil 7 8 of soil *149 13		analysis for	122	12
Standard solution 122 17			122	1.4
APDC-AAS 122 101 in saline waters by APDC-AAS 122 114 by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 1 interequirement of soil 7 8 of soil *149 13				
in saline waters by APDC-AAS APDC-AAS by EAAAS with palladium/magnesium nitrate see index for IC methods for 123 84 see index for IC methods for 7 8 of soil 7 8 1 interequirement 123 1 interequirement			122	101
APDC-AAS by EAAAS with palladium/magnesium nitrate 123 84 see index for IC methods for 140 123 of soil 7 8 of soil *149 13			122	101
palladium/magnesium nitrate		APDC-AAS	122	114
nitrate see index for IC methods for 140 123 1 interequirement of soil of soil 7 8 of soil *149 13				
Time requirement of soil 7 8 of soil *149 13		nitrate		
of soil *149 13	I ime requirement			_
1.moleate see index for IC methods for 140 123		of soil	*149	13
	Linoleate	see index for IC methods for	140	123

Subject	Description	Book Number N	Page 'umber
1 molenate	see index for IC methods for	140	123
I ithium	reference to method of determination for	1	6
	element characteristics in	_	
	AAS reference to methods for	20 29	42 43
	standard solution in IC	7.5	70
	retention values in IC for dissolution of insoluble	75	72
	residues of	93	17
	AAS method for standard solution for	111	8 11
	see index for methods for	140	123
Loss on ignition	of sewage, sludge and related solids	83	6
Lutetium	reference to method of	6.5	C,
	determination	1	6
Macrophytes	surveying of- in		
Magnesium	watercourses AAS method for	108 8	9 4
THOUGHT STORY	standard solution	8	5
	accuracy of analytical results element characteristics in	8	10
	AAS	20	42
	additional analytical	20	1.4
	information reference to methods for	20 29	46 43
	AAS method for	57	9
	FDTA titrimetric method for	57	9
	standard solution	57	12
	AAS method for standard solution in IC	57 75	16 70
	retention values in IC for	75	72
	dissolution of insoluble residues of	93	17
	AAS/HC1-HNO3 digestion		
	method for sewages AAS method for	93 111	20 16
	standard solution for	111	18
Maanasium hardnas	see index for IC methods for	140	123
Magnesium hardness Malate	EDTA titration see index for IC methods for	43 140	17 123
Malathion	standard solution	60	6
	retention values for in sewage sludges by	60	11
	FPD-GC	95	4
	retention values for Rf values for	95 95	13 13
Maleate	see index for IC methods for	140	123
Malonate	retention values in IC for see index for IC methods for	75 140	_
Malonic acid	retention values in IC for	75	73
Mancozeb Maneb	GC-FID method for GC-FID method for	127 127	
Manganesc	formaldoxime	14/	21
	spectrophotometric method standard solution	12 12	
	accuracy of analytical results	12	
	element characteristics in AAS	20	42
	reference to methods for	29	
	extractable by 0.05M EDTA from soil	71	•
	AAS method for	7 i 7 c	
	standard solution	76	
	accuracy of analytical results AAS/HC1-HNO ₃ digestion	7€	5 17
	method for soils	93	8

Subject	Description	Book Number N	Page Sumber
Manganese (cont)	dissolution of insoluble		
, sanganes (com,	residues of	93	17
	AAS/HC1-HNO ₃ digestion method for sewages	93	20
	reference to method of	7.5	20
	analysis for	122	12
	by EAAAS with palladium/magnesium		
	nitrate	123	84
Managhal and and their CCI	see index for IC methods for	140	123
Material extractable in CCl ₄ Material extractable in petroleum	method for determination of	15	4
ether	method for determination of	101	6
MBAS MCPA	see surfactants		
MCFA	pentafluorobenzyl ester/EC-GC method	90	23
	GC-MS confirmation of	90	30
	nitration/methylation	00	2.4
МСРВ	confirmation pentafluorobenzyl	90	34
	ester/EC-GC method	90	23
	GC-MS confirmation of	90	30
	nitration/methylation confirmation	90	34
MCPP (Mecoprop)	pentafluorobenzyl	90	.,,,
• • • •	ester/EC-GC method	90	23
	GC-MS confirmation of	90	30
	nitration/methylation confirmation	90	34
Mecarbam	retention values for	60	11
	Rf values for	95	13
Media reagents	retention values for details for preparation of	95 63	13 14
Wedia leagents	preparation of	64	52
	see also index in that volume	66	100
Mercuric nitrate	standard solution (1 ml = 1	51	17
	mg chloride) preparation of approx 0.01N	31	17
	solution	51	20
Mercury	flameless AAS	10	4
	standard solution dithizone extraction.	10	6
	flameless AAS	10	14
	cold vapour technique	20	29
	element characteristics in AAS	20	42
	additional analytical	20	1-
	information	20	
	reference to methods for method for recovery of	29 51	
	disposal of residues of	91	
	bromine oxidation/flameless		
	AAS method standard solution	92 92	_
	flameless/AAS method for	92	. 10
	sediments	92	16
	flameless atomic	0.2	
	fluorescence method flameless AAS method for	92	2 22
	soils etc	92	2 29
	AFS/HC1-HNO ₃ digestion		
	method for soils recovery of	93 9	
	commercial hydride	9	40
	generation methods for	99	38
	reference to method of	12	
	analysis for disposal of residues of	12: 12:	
	see index for IC methods for	14	
Meta arsenite	see index for IC methods for	14	0 123
Metals	use of plants to monitor heavy	14	4 6
	neavy	14	, 0

Subject	Description	Book Number N	Page umber
Metaphosphate	see index for IC methods for	140	123
Metham sodium	GC-FID method for	127	27
Methane	method for determining	22	6
Mathanal	GC-FID method for	125	7
Methanol	continuous flow method for standard solution	72 72	36 38
	GC method for	72	42
Methiocarb	HPLC-UV method for	127	7
	HPLC-UV method for	127	19
3-Methylcatechol 4-Methylcatechol	see phenol	50 50	15 15
2-Methyl-4,6-dinitrophenol	see phenol retention values for	124	53
Methyl sulphate	see index for IC methods for	140	123
Methylamine	see index for IC methods for	140	123
Methylene blue active substances	6		
(MBAS) Mevinphos	see surfactants retention values for	60	11
Mevinphos	retention values for	95	13
Molybdates	see index for IC methods for	140	123
Molybdenum	reference to method of		
	determination for	1	6
	element characteristics in AAS	20	42
	reference to methods for	29	44
	thiocyanate		
	spectrophotometric method	70	6
	standard solution	70	8
	in soils by thiocyanate standard solution	70 70	13 15
	AAS/HC1-HNO ₃ digestion	70	13
	method for sewages	93	20
	reference to method of		
	analysis for	122	12
Monobromoacetate Monochloramine	see index for IC methods for see total available chlorine	140	123
Monochloroacetate	see index for IC methods for	140	123
Monoethylamine	see index for IC methods for	140	123
Morpholine	see index for IC methods for	140	123
Morphothion	retention values for	60	11
Myristate	retention values for see index for IC methods for	95 140	13 123
Wyristate	see mack for termethods for	140	123
Nabam	GC-FID method for	127	27
Naegleria	provisional identification of	138	17
Naphthalene	retention values for	110	18
2-Naphthol	retention values for	113 50	39 7
Neodymium	see phenol reference to method of	30	′
	determination for	1	6
Neon	reference to methods for	29	44
Nessler's reagent	preparation of	40	11
Neutron activation analysis	preparation of sources for	48 81	10 16
rediton activation analysis	a review	81	28
Nickel	reference to method of	0.	20
	determination for	1	6
	element characteristics in	20	42
	AAS air segmented continuous	20	42
	flow method	24	5
	reference to methods for	29	44
	AAS method on MIBK		
	extract	46	
	standard solution furil-α-dioxime	46	/
	spectrophotometric method	46	13
	standard solution	46	16
	AAS method for	46	
	standard solution	46 46	
	accuracy of analytical results AAS method for sewage	46	28
	sludge	49	4
	-		

Subject	Description	Book Number N	Page umber
Nickel (cont)	extractable by 0.05M EDTA from soil	71	5
	extractable by 0.5M acetic	_	_
	acid	71	13
	retention values in IC for AAS/HC1-HNO ₃ digestion	75	72
	method for soils	93	8
	dissolution of soluble residues of	93	17
	AAS/HC1-HNO ₃ digestion method for sewages	93	20
	reference to method of analysis for	122	12
	by cathodic stripping		-
	voltammetry	122	60
	in saline waters by APDC-AAS	122	101
	in saline waters by	122	101
	APDC-AAS	122	114
	by EAAAS	123	58
S	see index for IC methods for	140	123
Niobium Nitella flexilis	reference to methods for	29	44
Nitetia pexius	monitoring heavy metals by use of	144	17
Nitrate	see also total oxidized	2	.,
	nitrogen		
	air segmented continuous		_
	flow method	24	5
	reference to methods for standard solution	29 40	44 7
	standard solution	40	25
	sulphosalicylic		
	spectrophotometric method direct UV	40	31
	spectrophotometric method	40	36
	standard solution ion selective electrode	40	38
	method	40	42
	IC method for standard solution in IC for	62 75	33 69
	retention values in IC for	75	72
	retention values in IC for	75	86
	IC method for	136	45
	see index for IC methods for	140	123
Nitrification	nitrifying ability of activated	5.5	
	sludge assessment of inhibition to	55 55	6 10
Nitrilotriacetate	see index for IC methods for	140	123
Nitrite	see also total oxidized nitrogen		
	air segmented continuous		
	flow method	24	5
	standard solution standard solution	40 40	7 26
	spectrophotometric	40	20
	diazotization method	40	49
	titrimetric method with		
	sulphanilic acid	40	
	IC method for	62 75	
	standard solution in IC for retention values in IC for	75 75	
	retention values in IC for	75	
	IC method for	136	45
	see index for IC methods for		
	FIA for FIA for	141 141	
Nitrogen	method for gas	141	32
050	determination of	22	6
	reference to methods for	29	44
	standard solution of	126	9

Subject	Description	Book Number Nu	Page mber
Nitrogen (cont)	Kjeldahl method with mercury catalyst	126	11
	Kjeldahl method with copper catalyst	126	21
	Kjeldahl method with hydrogen peroxide	126	26
	Kjeldahl method with copper/titanium	126	34
Nitrogen trichloride 4-Nitrophenol	see total available chlorine retention values for	124	53
Non-ionic surfactants	air segmented continuous flow method	24	5
	see surfactants	24	,
Octane	retention values for	110	18
Octylsulphonate Odour	see index for IC methods for simple method for	140 41	123 4
	method at temperature of 40°C	41	6
Oenanthate Oils	see index for IC methods for low resolution GC method	140	123
	for reference solution for	67 67	6 8
	GC method of methyl esters		_
	for recovery/preparation of	67	14
	distillates of high resolution GC method	67	23
	for	67	29
	identification of markers in gas	67	33
	gas chromatograms of various	67	37
	saponification value of	78 78	8
	hydroxyl value of acetyl value of	78	1 1 1 1
	iodine value of acid value	78 78	15 18
	characteristic values of certain	78	25
	TLC characterisation of	86	5
	sampling of by filtration/extraction/	104	4
	gravimetry guide to methods of analysis	118	7
	of	128	22
Oleate Omethoate	see index for IC methods for retention values for	140 60	123 11
	retention values for	95	13
op'-DDT	retention values/packing material for	13	15
op'-TDE	retention values for retention values/packing	82	16
CP 1111	material for	13	15
Organisms	retention values for toxicity testing with aquatic	82 64	16 7
Organochlorine pesticides	column packing material for	12	15
	methods for determining confirmation of identity of	13 13	6 20
	in sewage, sludges, muds and fish	82	5
	use of capillary columns for EC-GC method for turbid	82	29
	waters for	96	18
Organophosphorus pesticides	GC method for disposal of solutions of	60 60	5 7
	TLC confirmation of	60	14
	in sewage sludges TLC confirmation for	95 95	4 10
	retention values for	95	13
Organosulphonates	see index for IC methods for	140	123
Organosulphonates	see index for IC methods for	140	123

Subject	Description	Book Number N	Page umber
Orthophosphates	see index for IC methods for	140	123
Osmium	reference to methods for	29	44
Oxalacetate	see index for IC methods for	140	123
Oxalate	retention values in IC for	75	72
	see index for IC methods for	140	123
Oxalic acid	retention values in IC for	75	73
Oxidation procedures	for removal of organic	122	111
Or valladore content	substances see surfactants	122	111
Oxyalkylene content	see dissolved oxygen		
Oxygen	method for determining	22	6
	reference to methods for	29	44
Ozone	method for	27	26
PAH	See polycyclic aromatic		
	hydrocarbons		
Palladium	reference to methods for	29	44
Delimine	see index for IC methods for see index for IC methods for	140	123 123
Palmitate Paraffin	method relating to analysis	140	123
1 alalini	of	128	32
Paraquat	ion exchange – UV method		
•	for	117	7
Parathion Parathion	standard solution	60	6
	retention values for	60	11
	in sewage sludges by FPD-GC	95	4
	Rf values for	95	13
	retention values for	95	13
Parathion-methyl	retention values of	60	11
Desilie Constan	retention values for	95	13
Parathion-O-analogue	retention values for retention values for	60 95	11 13
Partition coefficient	equation for	58	6
PCB	methods for determining	13	6
	confirmation of identity of	13	20
	in sewage, sludges, muds and		_
	fish	82	5
	confirmatory procedure for EC-GC method for turbid	82	25
	waters for	96	18
PCP	see phenol	50	15
Pebulate	HPLC-UV method for	127	7
N. 1	HPLC-UV method for	127	19
Pelargonate Pentachlorobenzene	see index for IC methods for retention values for	140 96	123 10
Pentachloroethane	GC-EC head space method	90	10
2 cmacmo o cmane	for	110	19
	GC-EC pentane extraction		
	method for	110	24
Pentachlorophenol	see phenol methylation/EC-GC method	50	15
	for	90	15
	GC-EC pentafluorobenzoyl	, ,	
	ester method	124	8
	HPLC-UV method for	124	_
Pentan-3-one	method for	135	_
Pentanesulphonate Pentanoate	see index for IC methods for see index for IC methods for	140 140	
Perchlorate	see index for IC methods for	140	
Perdisulphate	see index for IC methods for	140	
Periodate	see index for IC methods for	140	
Permanganate	see index for IC methods for	140	123
Permanganate value	air segmented continuous flow method	24	5
	10 minute boiling water test	107	
	4 hour 27°C test	107	12
	other tests for determining	107	
Permethrin	method using EC-GC for	53	
	GC-EC method for	146	7

Cod See	Description	Book I Number Nur	page
Subject	Description	Number Ivar	noer
Permethrin-cis	see pyrethrins retention values for	53	15
Permethrin-trans	see pyrethrins retention values for	53	15
Peroxides	test for the presence in ether	90	8
Perylene	retention values for	113	39
Petrol	method relating to analysis of	128	32
Petroleum solvents	method relating to analysis of of sludge, soil, mud and	128	32
рН	sediment pH 7.0 buffer solution	7 7	4 9
	of natural, treated and waste waters	14	9
	definition of	14	10
	pH 4 buffer solution	14	12
	air segmented continuous	24	5
	flow method pH 5.2 buffer solution	39	17
	pH 6.9 buffer solution	44	13
	pH 4.0 buffer solution	44	13
	pH 9.2 buffer solution	44	13
	pH 4.0 buffer solution pH 6.9 buffer solution	44 44	21 21
	pH 3.1 buffer solution	44	26
	pH 9.4 buffer solution	87	17
	of low ionic strength waters	120	7
	pH 2.5 buffer solution	124 136	35 51
	pH 10.1 buffer solution of sludge, soil, mud and	130	31
	sediment	*149	6
	pH 4.0 buffer solution	*149	8
	pH 4.0 of a low conductivity	*149	0
Phenanthrene	water retention values for	110	8 18
Thenantinene	retention values for	113	39
Phenkapton	retention values for	60	11
	retention values for	95	13
Phenol	air segmented continuous	24	5
	flow method relative responses of a range	24	3
	of phenols	50	7
	GC method for	50	8
	monohydric/4-aminoantipyrin	e 50	1.6
	(pH 10) method standard solution	50 50	16 18
	4-aminoantipyrine	20	• •
	(pH 10)/extraction	50	22
	standard solution	50	24
	4-aminoantipyrine (pH 7.9) extraction 3-methyl-2-benzothiazolinone	50	28
	extraction	50	34
	retention values in IC for	75	73
	GC-EC bromination method	124	21
	for HPLC-electrochemical	124	21
	detection method	124	25
Phenols	GC-EC pentafluorobenzoyl		
	ester method	124	8
2 Phenylphenol	HPLC-UV method for see phenol	124 50	32 14
2-Phenylphenol	HPLC-UV method for	124	32
3-Phenylphenol	see phenol	50	14
4-Phenylphenol	see phenol	50	14
Disc	HPLC-UV method for	124	32
Phorate	retention values for retention values for	60 95	11 13
Phorate-O-analogue	retention values for	60	11
- north Co analogue	retention values for	95	13

Subject	Description	Book Number Ni	Page umber
Phosalone	retention values for retention values for	60 95	11 13
Phosphamidon	retention values for	60	11
Phosphate	retention values for air segmented continuous	95	13
Thosphate	flow method	24	. 5
	standard solution standard solution	26 26	12 19
	standard solution	38	8
	standard solution IC method for	38 62	13 33
	standard solution in IC	75	69
	retention values in IC for	75 75	72
	retention values in IC for standard solution	75 91	86 17
	continuous method for	91	39
	standard solution dissolution of insoluble	91	42
	residues of	93	17
	standard solution see index for IC methods for	136 140	16 123
	FIA for	140	34
Phosphite	see index for IC methods for	140	123
Phosphonates	sec index for IC methods for	140	123
Phosphorus	reference to methods for phosphomolybdenum blue	29	44
	method	38	5
	standard solution	38	8
	phosphomolybdenum blue extraction method	38	11
	standard solution	38	13
Phthalates	sec index for IC methods for	140	123
Phthalic acid	retention values in IC for	75	73
Piperidine Pipettes	sec index for IC methods for note on accurate	140	124
1 ipeties	measurement using	100	9
Pirimicarb	TLC method for	127	21
Pirimiphos-methyl	standard solution retention values for	60 60	6 11
	in sewage sludges by		• •
	FPD-GC retention values for	95 95	4 13
Pirimithate	retention values for	60	11
M	retention values for	95	13
Plants	initial preparation of initial preparation prior to	6	11
	analysis	89	21
	use of – to monitor heavy metals	144	
Plasma emission spectral lines	list of elements and		
Platinum	wavelengths for reference to methods for	1 29	74 44
	cleaning procedure for		, ,
	crucibles of care of	37 62	24 54
	sec index for IC methods for	140	124
Polarography	summary of	29	12
Polonium Polychlorinated biphenyls	reference to methods for sec PCB	29	44
Polycyclic aromatic hydrocarbons	HPLC-fluorescence method		•
	for TLC-UV method for	113 113	8 18
	retention values for	113	39
Polyelectrolytes Potable waters	sec settlement aids sampling	83 25	
Potamogeton pectinatus	monitoring heavy metals by		
Potassium	use of element characteristics in	144	20
2 Ottosauan	AAS	20	
	reference to methods for	29	44

Potassium <i>(cont)</i>	flame photometric method	35	
		25	
			4
	standard solution	35	6
	AAS method for	35	9
	accuracy of analytical results	35	15
	standard solution flame photometric method	57	12
	for	57	14
	standard solution in IC	75	70
	retention values in IC for dissolution of insoluble	75	72
	residues of	93	17
•	see index for IC methods for	140	124
Potassium bromate	standard solution of 0.1N	33	6
Potassium chloride	(0.01667M) preparation of 0.005M	33	O
rotassium emoride	solution	14	7
Potassium dichromate	preparation of standard	•	
	solution	4	7
	preparation of 0.01N	27	17
	(M/600) solution standard solution of	21	1 /
	0.02083M	59	6
	standard solution of	37	U
	0.02083M	97	12
Potassium hydrogen phthalate	preparation of 400 mg/1		
	COD solution	4	8
	preparation of 400 mg/1		
	COD solution	97	14
Potassium hydroxide	0.5M ethanolic solution of	78	9
Potassium iodate	preparation of 0.0042M standard solution	16	9
	preparation of 0.0042M	10	9
	solution	73	8
	preparation of 0.025N		_
	solution	100	15
Potassium permanganate	preparation/standardisation		
	of 0.002M	107	8
pp'-DDE	retention values/packing material for	1.2	1.5
	retention values for	13 82	15 16
	confirmatory procedure for	82 82	22
	EC-GC method for turbid	62	22
	waters for	96	18
pp'-DDT	retention values/packing		
	material for	13	15
	retention values for	82	16
	confirmatory procedure for	82	21
	EC-GC method for turbid	0.6	
mm' INTE	waters for retention values/packing	96	18
pp'-DTE	material for	13	15
	retention values for	82	16
	confirmatory procedure for	82	22
	EC-GC method for turbid		
	waters for	96	18
Praseodymium	reference to method of		_
	determination for	1	6
Preservation techniques	after sampling	25	38
Pre-treatment	see chemical pre-treatment for boron analysis	39	30
	for removal of organic	37	.50
	substances	122	111
	of samples prior to analysis	*145	8
Promethium	reference to methods for	29	44
Prometryne	methylation/NSD-GC		
••	method for	90	43
Propane	GC-FID method for	125	7
Propazine	methylation/NSD-GC method for	90	43
Propham	HPLC-UV method for	127	7
1 Tophani	TH LX-O V Inclind for	12/	,

Subject	Description	Book Number Nu	Page mber
Propham (cont)	HPLC-UV method for	127	19
	TLC method for	127	21
Propionaldehyde	method for	135	12
Propionate	retention values in IC for see index for IC methods for	75 140	72 124
Propionic acid	retention values in IC for	75	73
Propoxur	HPLC-UV method for	127	14
Propylamine	see index for IC methods for	140	124
Pyrene	retention values for	113	39
Pyrethrins	method using EC-GC for retention values for	53 53	4 15
Pyrogallol	see alkaline pyrogallol	33	13
, j.e.ge.	solution		
	see phenol	50	14
Pyrophosphate	see index for IC methods for	140	124
Pyrrolidine Pyruvate	see index for IC methods for see index for IC methods for	140 140	124 124
1 yruvate	see mack for te methods for	140	124
Quinizarin	see identification of		
	markers in gas oil	67	33
Quinol	see phenol	50	14
Radiation	units of measurement of	81	6
	a review	81	7
	analytical instrumentation		
	for	81	13
	nicasurements in water using X-ray fluorescence	94	6
	nieasurenients	94	55
Radioactive isotopes	data for some	94	14
Radioactive tracers	use of	81	31
Radioactivity	determination by gamma ray	122	,
	spectrometry carrier solution used in	132	6
	measurements of	132	18
	detection limits in		
	nieasurements of	132	29
Radionuclides	determined by gamma ray	122	26
Radium	spectrometry reference to methods for	132 29	26 44
Radium	determination of	94	38
Radon	reference to methods for	29	44
	gross ganima measurement		
	in water for	94	33
	determination of determination in air of	94 94	38 53
Reservoirs	sampling	25	21
Residual chlorine	meaning of terms for	27	7
Resmethrin	retention values for	53	15
Resolution Resorcinol	equation for column	67 50	8
Rhenium	see phenol reference to methods for	29	14 44
Kilemani	see index for IC methods for	140	124
Rhodium	reference to methods for	29	44
Rhynchostegium riparioides	monitoring heavy metals by		
Diver also Castian	use of details of	144	19
River classification Rivers	sampling	85 25	17 20
Robots	use of – in methods of	2.5	20
	analysis	137	16
Rubidium	reference to method of		,
	determination for element characteristics in	1	6
	AAS	20	42
	reference to methods for	29	44
	retention values in IC for	75	72
	dissolution of insoluble	0.3	
	residues of see index for IC methods for	93 140	17 124
Ruthenium	reference to methods for	29	44
		-/	, .

Subject	Description	Book Number N	Page 'umber
Salmonellae	isolation and identification	63	5
Samarium	reference to method of		
	determination for	1	6
6 . 1	reference to methods for	29	44
Sampling	of sewage and sludges from tanks	6 6	4 5
	from pipes	6	6
	of soils and sediments	6	7
	of aquatic benthic macroinvertebrates	18	4
	methods of biological	18	4
	a review	25	15
	of rivers	25	20
	of streams of reservoirs	25 25	20 21
	of lakes	25	21
	of coastal waters	25	22
	of potable waters	25	23
	of groundwaters of industrial effluents	25 25	23 24
	of sewage effluents	25	24
	of sediments	25	25
	preservation of samples after	25	38
	containers used for storage conditions of	25	45
	samples after	25	45
	devices for/in shallow		
	flowing waters	52	4
	for non-planktonic algae bethnic macroinvertebrates	74	4
	in deep water	79	4
	macroinvertebrates in supply		
	systems	84	4
	device for-in lowland waters	85	4
	of sewage, sludges, sediments and soils	89	5
	of plants and wild life	89	5
	from tanks	89	7
	from pipes	89	9
	from bottles/cans/syphons and containers	98	33
	of oils, fats, waxes and tars	104	4
	fish populations	121	10
Saponification value	of oils	78	8
Scandium	reference to method of	1	
	determination for reference to methods for	1 29	6 44
Scapania undulata	monitoring heavy metals by	2)	
	use of	144	19
Schradan	retention values for	60	
5.41	retention values for	95	
Sediments	initial preparation of sampling	6 25	
	initial preparation prior to	23	23
	analysis	89	21
Selenate	see index for IC methods for	140	124
Selenite	see index for IC methods for	140	124
Selenium	element characteristics in	20	
	AAS additional analytical	20	42
	information	20	46
	reference to methods for	29	44
	EC-GC method	99	
	standard solution diaminonaphthalene	99	10
	fluorimetric method	99) 16
	in soils/sludges by hydride		
	generation	99	23
	commercial hydride generation methods	99	9 38
	generation methods	9:	. 50

Subject	Description	Book Number N	
Selenium (cont)	reference to method of analysis for by EAAAS with	122	12
	palladium/magnesium		
	nitrate	123	84
Serbam	GC-FID method for	127	31
Settleability Settleable solids	of activated sludge method for	83 105	42 20
setticable solids	Imhoff cone method for	105	24
Settlement aids	method for selection of		
	chemicals as	83	25
Sewage effluents	sampling	25	24
Sewage sludge	initial preparation prior to analysis	91	8
	inhibitory effects to		-
	digestion of	102	7
	assessment of treatability of		2.5
	chemicals adsorption characteristics of	114	35
	substances	148	6
SI Units	for the measurement of	170	Ū
	radiation	94	5
Silicate	air segmented continuous	_	
	flow method	24	5
	see index for IC methods for	140	124 38
Silicon	FIA for element characteristics in	141	30
Silicon	AAS	20	42
	reference to methods for	29	44
	molybdosilicic		
	spectrophotometric method	37	5
	standard solution	37	7
	molybdosilicic	37	13
	spectrophotometric method pre-treatment methods for	37	13
	conversion	37	22
	dissolution of insoluble		
	residues of	93	17
Silicon dioxide	see silicon		
Silver	reference to method of determination for	1	6
	element characteristics in	1	U
	AAS	20	42
	reference to methods for	29	44
	cleaning procedure for	2.5	
	crucibles of	37 51	
	recovery of recovery of	62	
	AAS method for	68	
	standard solution	68	6
	in sewage sludge by AAS	68	
	standard solution	68	
	accuracy of analytical results AAS/HC1-HNO ₃ digestion	68	3 16
	method in sewages	9:	3 20
	recovery of	9	
	reference to method of		
	analysis-for-	12:	
	by EAAAS	12.	
	standard solution see index for IC methods for	12. 14	
Silver nitrate	standard solution (1 ml =	14	0 144
Sirei milate	1 mg chloride)	5	1 8
	standard 0.0141M solution	5	
	standard solution of 0.1M	10	
	standard solution of 0.01M	13	1 8
	methylation/NSD-GC method for	^	0 4:
Simazine	mernog for	9	0 43
		e e	3 14
Sludge cake compressibility	measurement of		
			3 45

Subject	Description	Book Number Nu	Page mber
Smell bell	see odour		
Sodium	element characteristics in		
	AAS	20	42
	reference to methods for flame photometric method	29	44
	for	36	4
	standard solution	36	6
	AAS method for standard solution	36 36	9 11
	accuracy of analytical	30	**
	results	36	15
	standard solution	57	12
	flame photometric method for	57	14
	standard solution in IC	75	70
	retention values in IC for	75	72
	dissolution of insoluble residues of	93	17
	see index for IC methods for	140	124
Sodium carbonate	preparation of approx 0.01N		• •
	solution standard solutions	51 98	20 25
Sodium chloride	standard solutions standard solution (1 ml =	90	23
	1 mg chloride)	51	8
	preparation of 0.01N	£ 1	20
	solution standard 0.0141M solution	51 51	20 24
Sodium hydroxide	preparation/standardisation	J.1	24
•	of 1.00N	37	7
	preparation/standardisation of 0.02N	44	34
	preparation/standardisation	44	34
	of 0.1M	98	19
Sodium oxalate	standard solution of 0.005M	107	9
Sodium pyrrolidinedithiocarbamate	preparation of 0.0005M for		
pyrronomeditinocarbamate	bismuth	47	31
Sodium thiosulphate	preparation/standardisation		
	of 0.0125M preparation of 0.0125M	16 27	9 11
	standardisation of	21	1 1
	0.0125M	27	13
	preparation/standardisation	2.2	
	of 0.002M preparation/standardisation	33	6
	of 0.0125M	73	8
	preparation/standardisation	22	
	of 0.0125M preparation of 0.0125M	73 100	14 16
Soils	initial preparation of	6	11
	initial preparation prior to		
Specific resistance	analysis to dewatering of sludge	89 83	21 45
Standard addition technique	for potentiometric methods	62	50
Statistics	concepts of	25	8
Stearate	see index for IC methods for	140	124
Stirred sludge density	method for settleability of sludge	83	42
Stirred specific volume index	method for settleability of	0.5	~~
0	sludge	83	42
Storage conditions Stray light	of samples solutions for testing for	25 30	45 23
Streams	sampling	25	20
Strontium	reference to method of		
	determination for element characteristics in	1	6
	AAS	20	42
	reference to methods for	29	44
	retention values in IC for	75	72
	dissolution of insoluble residues of	93	17
		, ,	

Subject	Description	Book Number Ni	Page umber
Strontium (cont)	AAS method for	111	26
	standard solution for	111	29
Succinate	see index for IC methods for	140	124
Succinate	retention values in IC for see index for IC methods for	75 140	72 124
Succinic acid	retention values in IC for	75	73
Sulfotep	retention values for	60	11
6.1.1	retention values for	95	13
Sulphate	air segmented continuous		_
	flow method	24	5
	gravimetric analysis/barium chloride	26	5
	indirect titrimetric analysis	20	,
	using EDTA	26	10
	standard solution	26	12
	titrimetric method/barium chloride	27	1.7
	standard solution	26 26	17 19
	indirect AAS method	26	24
	2-aminoperimidine		
	spectrophotometric method	26	30
	standard solution continuous flow method	26	32
	IC method for	26 62	36 33
	standard solution in IC for	75	69
	retention values in IC for	75	72
	retention values in IC for	75	86
	gravimetric method for	136	9
	titrimetric barium method for	136	1.4
	by ICP emission	130	14
	spectrometry	136	21
	continuous flow		
	2-aminoperimidine method	136	24
	FIA using a turbidimetric method	126	22
	IC method for	136 136	32 40
	continuous methylthymol	130	40
	blue method for	136	50
	accuracy of analytical results	136	58
	see index for IC methods for	140	124
Sulphide	FIA for air segmented continuous	141	40
comparing the second se	flow method	24	5
	reference to methods for	29	44
	iodometric titration for	73	6
	DPD spectrophotometric		
	method preparation/standardisation	73	12
	of standard	73	14
	ion selective electrode for	73	18
6.1.1%	see index for IC methods for	140	124
Sulphite	retention values in IC for pararosaniline	75	72
	spectrophotometric method	100	12
	preparation/standardisation	100	12
	of	100	15
	determination by iodometric		
	titration	100	19
Sulphonates	see index for IC methods for see index for IC methods for	140 140	124 124
Sulphur dioxide	pararosaniline	140	124
•	spectrophotometric method	100	12
	determination by iodometric		
Sulphuria acid	titration	100	19
Sulphuric acid	preparation/standardisation of 0.1N	4.4	22
Sumicidin	retention values for	44 53	32 15
Surber sampler	description of	53 52	6
Surfactants	anionic-methylene blue	J.L	Ü
	method for	47	7

Subject	Description	Book Number N	Page 'umber
Surfactants (cont)	automatic methylene blue method for	47	12
	extraction from sewage	77	12
	sludge	47	18
	nonionic – a review	47	23
	method for ethoxylated nonionic	47	28
	alkoxylated nonionic method	• • • • • • • • • • • • • • • • • • • •	20
	by TLC	47	38
	oxyalkylene content of	47	4.5
	nonionic by GC ethoxylated	47	45
	nonionic/spectrophotometric	47	51
	cationic-disulphine blue		
6	method	47	58
Suspended solids	of sewage, sludge and related solids	83	9
	paper filtration method for	105	8
	membrane filtration method		
	for	105	14
	centrifugal method for	105	17
2,4,5-T	EC-GC method for	90	7
	pentafluorobenzyl ester/EC-GC method	90	23
	GC-MS confirmation of	90	30
Tantalum	reference to methods for	29	44
Tars	see oils		
Tartrate Taste	see index for IC methods for method for	140 41	124 11
TBA	see 2,3,6-trichlorobenzoic	41	11
	acid		
Tellurate	see index for IC methods for	140	124
Tellurite Tellurium	see index for IC methods for element characteristics in	140	124
Tenurium	AAS	20	42
	additional analytical	20	12
	information	20	46
	reference to methods for	29	44
	commercial hydride generation methods	99	38
Temperature	measurement and scales	112	9
-	systems	112	
Terbium	reference to method of	_	,
Tachina	determination for	1	6
Terbutryne	methylation/NSD-GC method for	90	43
Tetrabutylammonium	see index for IC methods for	140	
1,2,3,4-Tetrachlorobenzene	retention values for	96	
1,2,3,5-Tetrachlorobenzene	retention values for	96	
1,2,4,5-Tetrachlorobenzene 1,1,1,2-Tetrachloroethane	retention values for GC-EC head space method	96	10
1,1,1,2-1 ctracmorocmanc	for	110	19
	GC-EC pentane extraction		
11227.	method for	110) 24
1,1,2,2-Tetrachloroethane	GC-EC head space method for	110) 19
	GC-EC pentane extraction		, 1,
	method for	110	
Tetrachloroethylene	retention values for	34	15
	distillation/extraction/GC method for	90	5 28
	retention values for	110	
	GC-EC head space method		
	for	110) 19
	GC-EC pentane extraction		24
	method for retention values for	110 11	
2,3,4,5-Tetrachlorophenol	HPLC-UV method for	12	
• •			

Subject	Description	Book Number Nu	Page mber
2,3,4,6-Tetrachlorophenol	see phenol		
	methylation/EC-GC method for	90	15
	HPLC-UV method for	124	32
2,3,5,6-Tetrachlorophenol	HPLC-UV method for	124	32
Tetradecane	retention values for	110	18
Tetraethylammonium	see index for IC methods for	140	124
Tetramethyl thiuram disulphide	GC-FID method for	127	27
Tetramethylammonium	see index for IC methods for	140	124
Tetrathionate	see index for IC methods for	140	124
Thallium	reference to method of determination for	1	6
	element characteristics in AAS	20	42
	additional analytical		
	information	20	46
	reference to methods for reference to method of	29	44
	analysis for	122	12
	by EAAAS	123	70
	standard solution	123	74
	by EAAAS with palladium/magnesium		
	nitrate	123	84
	see index for IC methods for	140	124
Theoretical gas production	calculation for	129	12
Theoretical plates	equation for	67	15
Thickening characteristics of sludges	low speed centrifuge method		
studges	for	83	34
Thin layer chromatography	see chromatographic		
	methods		
	characterisation of oils etc using	86	5
Thiocarbamate	HPLC-UV determination of	127	7
Thiocyanate	titrimetric method using		22
	AgNO ₃ spectrophotometric method	100	32
	using Fe(III)	100	32
	standard solution	100	35
	continuous flow method for	100 100	39 42
	standard solution see index for IC methods for	140	124
Thionazin	retention values for	60	11
	retention values for	95	13
Thionazin-O-analogue	retention values for retention values for	60 95	11 13
Thiosulphate	jodometric titration for	100	25
	see index for IC methods for	140	124
771 '	see sodium thiosulphate	127	27
Thiram Thorium	GC-FID method for reference to methods for	29	44
, no. rum	dissolution of insoluble		
Thulium	residues of reference to method of	93	17
	determination for	1	6
Tin	reference to method of determination for	1	6
	element characteristics in	•	Ü
	AAS	20	42
	additional analytical information	20	46
	reference to methods for	29	44
	dissolution of insoluble	_	
	residues of	93	17
	commercial hydride generation methods	99	38
	reference to method of	,,	50
	analysis for	122	12
	see index for IC methods for	140	124

Subject	Description	Book Number Nu	Page mber
Tin (cont)	toluene extract-EAAAS		
	method for organo	142	7
	toluene extract-EAAAS method for organo	142	12
	hydride-DCM extract-GC		
	method for organo	142	17
	HPLC-AAS method for speciation of	142	25
	AAS or ICP method for total	142	27
Titanium	reference to method of determination for	1	6
	element characteristics in	1	O
	AAS	20	42
	reference to methods for retention values in IC for	29 75	44 72
	dissolution of insoluble	7.5	12
	residues of	93	17
Toluene	see index for IC methods for retention values for	140 110	124 18
Toluenesulphonates	see index for IC methods for	140	124
Total alkalinity	see alkalinity	2.7	
Total available chlorine	iodometric method for DPD titrimetric method for	27 27	10 15
	DPD spectrophotometric	21	13
	method for	27	21
Total dissolved solids Total hardness	drying method at 180°C for EDTA titration	105 43	25 5
Total Hardiness	accuracy of analytical results	43	18
	FIA for	141	42
Total inorganic phosphorus Total nitrogen	see phosphorus digestion method for	38 91	25 12
1 otal milogen	continuous method for	91	27
Total organic carbon	definition of terms used in	19	5
	instrumental method for determining	19	5
	detection systems used in	19	14
	types of instruments used in	19	21
	standard solution (50 mg/L)	59	14
Total oxidized nitrogen	Devarda's alloy reduction	37	
	method	40	9
	continuous flow method for nitrite	40	15
	continuous flow method for	40	
Fr	nitrite	40	23
Total oxygen demand Total phosphorus	see total organic carbon see phosphorus	38	26
Total phosphorus	digestion method for	91	12
5 0	continuous method for	91	27
Total solids content	of sewage, sludge and related solids	83	6
Total sulphur	methods for determining	100	49
Toxicity testing	introduction to	64	7
	protocol for static test procedure for	64	36
	protocol for flow-through	٠.	50
	procedure for	64	40
	by growth inhibition of aerobic bacteria	114	26
Trade effluent screening	procedure for	5	10
Tri-allate	HPLC-UV method for HPLC-UV method for	127 127	7
	TLC method for	127	19 21
Tribromoacetate	see index for IC methods for	140	124
Tribromomethane	see bromoform see trihalomethanes		
	retention values for	110	18
Tributylammonium	see index for IC methods for	140	124
Trichloroacetate 1,2,4-Trichlorobenzene	see index for IC methods for retention values for	140 96	124
1,2,4-1 richlorobenzene 1,2,5-Trichlorobenzene	retention values for	96 96	10 10
1,3,5-Trichlorobenzene	retention values for	96	iŏ

Subject	Description	Book Number Ni	Page umber
1,3,6-Trichlorobenzoic acid	EC-GC method for pentfluorobenzyl	90	15
1,1,1-Trichloroethane	ester/EC-GC method retention values for distillation/extraction/GC	90 34	23 15
	method for retention values for	96 110	28 18
	GC-EC head space method for GC-EC pentane extraction	110	19
1.1.2-Trichloroethane	method for retention values for GC-EC head space method	110 110	24 34
1,1,2 Themoroculance	for GC-EC pentane extraction	110	19
Trichlorocthylene	method for retention values for distillation/extraction/GC	110 34	24 15
	method for retention values for GC-EC head space method	96 110	28 18
	for GC-EC pentane extraction	110	19
Trichloromethane	method for retention values for see trihalomethanes	110 110	24 34
2,3,4-Trichlorophenol 2,3,5-Trichlorophenol	HPLC-UV method for HPLC-UV method for	124 124	32 32
2,3,6-Trichlorophenol 2,4,5-Trichlorophenol	HPLC-UV method for see phenol	124	32 15
2, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	methylation/EC-GC method for	90	15
	GC-EC pentafluorobenzoyl ester method	124	8
2,4,6-Trichlorophenol	HPLC-UV method for see phenol	124 50	32 15
	methylation/EC-GC method for	90	15
	GC-EC pentafluorobenzoyl ester method HPLC-UV method for	124 124	8 32
2.4.6 Tricklorenhous!	retention values for HPLC-UV method for	124	53
3,4,5-Trichlorophenol 2,4,5-Trichlorophenoxy acetic acid 1,1,2-Trichlorotrifluoroethane	see 2,4,5-T distillation/extraction/GC	124	32
Triethylamine	method for see index for IC methods for	96 140	28 124
Trifluoroacetate Trihalomethanes	see index for IC methods for GC method for determining	140 34	124 4
Trimetaphosphate	retention values for see index for IC methods for	34 140	15 124
Trimethylamine Tripolyphosphate	see index for IC methods for see index for IC methods for	140 140	124 124
Tripropylamine	see index for IC methods for	140	124
Tritium Tungstate	determination of see index for IC methods for	94 140	65 124
Tungstate	reference to methods for	29	44
Turbidity	suspension for absorption of Secchi disc method for	51 103	9 16
	nephelometric method for standard solution for	103 103	18 19
	Standard Solution for	103	19
Ultraviolet spectrophotometry	a review determination of	30 88	1 29
Underwater light Uranium	reference to methods for UV – visible fluorescence	29	44
	measurement of reference to method of	94	64
	analysis for	122	12

Subject	Description	Book Number 1	Page Sumber
	-	1	
Uranium (cont)	by cathodic stripping voltammetry	122	71
	standard solution	122	74
Urea	spectrophotometric method	0.7	5
	for standard solution	87 87	5 8
	continuous method for	87	14
	standard solution	87	18
	continuous method for	87	21
	accuracy of analytical results	87	24
Valerate	see index for IC methods	440	404
Vanadium	for reference to method of	140	124
Vanacium	determination for	1	6
	element characteristics in		
	AAS	20	42
	reference to methods for	29	44
	retention values in IC for dissolution of insoluble	75	72
	residues of	93	17
	reference to method of		
	analysis for	122	12
	by cathodic stripping	122	20
	voltammetry by EAAAS	122 123	39 77
	standard solution	123	80
	see index for IC methods for	140	124
Visible spectrophotometry	a review	30	1
Volatile fatty acids	see fatty acids	2.1	
	standard acid solutions	21	8
	hydroxylamine spectrophotometric method	21	12
Waxes	see oils		
Wildlife	initial preparation prior to		
	analysis	89	21
Wijs' solution	preparation of	78	16
X-ray diffraction	summary of	29	26
X-ray fluorescence lines of	Anhla of wavelensky for	0.4	5 0
elements X-ray fluorescence	table of wavelengths for	94	58
spectrophotometry	review of	1	45
er con er moren,	summary of	29	
	details of	81	18
	for radioactivity	0.4	
Xanthate	measurements HPLC-UV method for	94 123	
Xenon	reference to methods for	29	
2,3-Xylenol	GC-EC pentafluorobenzoyl		, ,
	ester method	124	
2,4-Xylenol	see phenol	50) 15
	GC-EC pentafluorobenzoyl ester method	124	4 8
2,5-Xylenol	see phenol	50	
_,,,	GC-EC pentafluorobenzoyl		
	ester method	12-	-
2,6-Xylenol	see phenol	50	0 15
	GC-EC pentafluorobenzoyl ester method	12	4 8
3,4-Xylenol	see phenol	5	
-,	GC-EC pentafluorobenzoyl		- • • •
	ester method	12	
3,5-Xylenol	see phenol	5	0 15
	GC-EC pentafluorobenzoyl ester method	12	л o
Xylenols	HPLC-UV method for	12	
Ajknois	II De o i metilod ioi	12	, ,,2

Subject	Description	Book Number Nu	Page unber
Ytterbium	reference to method of		
11101214	determination for	1	6
	reference to methods for	29	44
Yttrium	reference to method of		
	determination for	1	6
	reference to methods for	29	44
	see index for IC methods for	140	124
Zinc	element characteristics in		
	AAS	20	42
	reference to methods for	29	44
	AAS method	31	4
	standard solution	31	6
	AAS method for sewage		
	sludge	49	4
	extractable by 0.05M EDTA		
	from soil	71	5
	extractable by 0.5M acetic	· -	•
	acid	71	13
	retention values in IC for	75	72
	AAS/HC1-HNO ₃ digestion		-
	method for soils	93	8
	dissolution of insoluble	-	
	residues of	93	17
	AAS/HC1-HNO ₃ digestion	, <u>-</u>	
	method for sewages	93	20
	reference to method of	-	
	analysis for	122	12
	by cathodic stripping		
	voltammetry	122	49
	in saline waters by		
	APDC-AAS	122	101
	by EAAAS	123	83
	see index for IC methods for	140	124
Zineb	GC-FID method for	127	27
Zirconium	reference to method of	12,	
2 1. Compin	determination for	1	6
	element characteristics in	•	3
	AAS	20	42
	reference to methods for	29	44
	dissolution of insoluble		7-7
	residues of	93	17
	residues of	73	1 /

Glossary of terms used

AAS Atomic absorption spectrometry/spectrometric

AFS Atomic fluorescence spectrometry/spectrometric

APDC Ammonium pyrrolidine dithiocarbamate

BOD Biochemical oxygen demand

CIELAB International Commission on Illumination L*a*b* values

COD Chemical oxygen demand

DPD N-N-diethyl-p-phenylenediamine

EAAAS Electrothermal atomisation atomic absorption spectrometry

EC Electron capture

EDTA Ethylenediaminetetraacetic acid

FIA Flow injection analysis

FID Flame ionisation detector

FPD Flame photometric detector

GC Gas chromatography/chromatographic

HPLC High performance liquid chromatography/chromatographic

IC Ion chromatography/chromatographic

ICP Inductively coupled plasma

IR Infrared spectrometry

LTPRI Linear temperature programmed retention index

MIBK Methyl isobutyl ketone

MS Mass spectrometry/spectrometric

NSD Nitrogen specific detector

OECD Organisation for Economic Co-operation and Development

PAH Polynuclear aromatic hydrocarbons

Rf Retention time

SRT Sludge retention time

T1C Thin layer chromotography/chromatographic

UV Ultraviolet

Address for correspondence

Correspondence about this booklet or any method in this series should be addressed to:

The Secretary
Standing Committee of Analysts
Department of the Environment
Drinking Water Inspectorate
Romney House
43 Marsham Street
London SW1P 3PY

HMSO

HMSO publications are available from:

HMSO Publications Centre (Mail, fax and telephone orders only) PO Box 276, London, SW8 5DT Telephone orders 071-873 9090 General enquiries 071-873 0011 (queuing system in operation for both numbers) Fax orders 071-873 8200

HMSO Bookshops
49 High Holborn, London, WC1V 6HB
(counter service only)
071-873 0011 Fax 071-873 8200
258 Broad Street, Birmingham, B1 2HE
021-643 3740 Fax 021-643 6510
Southey House, 33 Wine Street, Bristol, BS1 2BQ
0272 264306 Fax 0272 294515
9-21 Princess Street, Manchester, M60 8AS
061-834 7201 Fax 061-833 0634
16 Arthur Street, Belfast, BT1 4GD
0232 238451 Fax 0232 235401
71 Lothian Road, Edinburgh, EH3 9AZ
031-228 4181 Fax 031-229 2734

HMSO's Accredited Agents (see Yellow Pages)

and through good booksellers

