The Tentative Identification of Volatilizable Organic Compounds by Linear Temperature Programmed Gas Chromatographic Retention Indices with Notes on Other Methods for Identifying Organic Substances; 1988

Methods for the Examination of Waters and Associated Materials

The Tentative Identification of Volatilizable Organic Compounds by Linear Temperature Programmed Gas Chromatographic Retention Indices

with Notes on Other Methods for Identifying Organic Substances; 1988

Note, the use of the word 'Tentative' in the title refers to the identification and not, as is usual in this series, to the degree of testing.

Methods for the Examination of Waters and Associated Materials

© Crown Copyright 1989 First Published 1989

ISBN 0 11 752222 8

Within the Method for the Examination of Waters and Associated Materials series are four-ring binders suitable for use in storing reports. These are available from HMSO Price £4 (ISBN 0 11 7514373)

~

Her Majesty's Stationery Office

Standing order service

Placing a standing order with HMSO BOOKS enables a customer to receive other titles in this series automatically as published.

This saves the time, trouble and expense of placing individual orders and avoids the problem of knowing when to do so.

For details please write to HMSO BOOKS (PC 13A/1). Publications Centre, PO Box 276, London SW8 5DT quoting reference

X22.04.22

The standing order service also enables customers to receive automatically as published all material of their choice which additionally saves extensive catalogue research. The scope and selectivity of the service has been extended by new techniques, and there are more than 3,500 classifications to choose from. A special leaflet describing the service in detail may be obtained on request.

5

The Tentative Identification of Volatilizable Organic Compounds by Linear Temperature Programmed Gas Chromatographic Retention Indices (LTPRI), with an Inventory of Indices, with Notes on other Methods for Identifying Organic Substances; 1988.

This procedure for tentatively identifying volatilizable organic compounds is based on the WRC Final Report and Inventories of Indices compiled under DOE Contract PECD 7/7/188-4/84. LTPRI is often suitable for tentative identification and for rapid screening of samples when GCMS is not practicable.

Contents

Abou	t this series	4
Warn	ing to users	5
Ident	ification of Unknown Organic Substances	6
Intro	duction to LTPRI	7
1.	Performance Characteristics of the	
	Procedure	8
2.	Outline Procedure	9
3.	Standard Columns	9
4.	Chromatographic Conditions	10
5.	Calculation of Indices	11
6.	Substance Identification	12
7.	Commonly Used Extraction Solvents	12
8.	Standard substances	12
9.	Hazards	12
10.	Extension of the Method	13
Appe	ndix	14
A1.	Rigorous Calculation of Linear	
	Temperature Programmed Retention	
	Indices	14
A2.	Examples of Computer Calculation	
	Programmes	15
Refer	ences	24
Addro	ess for Correspondence	25
Table	S	26
Figur	es	55
Meml	pership responsible for this booklet	60

About This Series

This booklet is part of a series intended to provide both recommended methods for the determination of water quality, and in addition, short reviews of the more important analytical techniques of interest to the water and sewage industries.

In the past, the Department of the Environment and its predecessors, in collaboration with various learned societies, have issued volumes of methods for the analysis of water and sewage culminating in 'Analysis of Raw, Potable and Waste Waters'. These volumes inevitably took some years to prepare, so that they were often partially out of date before they appeared in print. The present series will be published as series of booklets on single or related topics; thus allowing for the replacement or addition of methods as quickly as possible without need of waiting for the next edition. The rate of publication will also be related to the urgency of requirements for that particular method, tentative methods and notes being issued when necessary.

The aim is to provide as complete and up to date a collection of methods and reviews as is practicable, which will, as far as possible, take into account the analytical facilities available in different parts of the Kingdom, and the quality criteria of interest to those responsible for the various aspects of the water cycle. Because both needs and equipment vary widely, where necessary, a selection of methods may be recommended for a single determinand. It will be the responsibility of the users-the senior technical staff-to decide which of these methods to use for the determination in hand. Whilst the attention of the user is drawn to any special known hazards which may occur with the use of any particular method, responsibility for proper supervision and the provision of safe working conditions must remain with the user.

The preparation of this series and its continuous revision is the responsibility of the Standing Committee

of Analysts (to review Standard Methods for Quality Control of the Water Cycle). The Standing Committee of Analysts is a committee of the Department of the Environment set up in 1972. Currently it has 9 Working Groups, each responsible for one section or aspect of water cycle quality analysis. They are as follows:

- 1.0 General principles of sampling and accuracy of results
- 2.0 Microbiological methods
- 3.0 Empirical and physical methods
- 4.0 Metals and metalloids
- 5.0 General nonmetallic substances
- 6.0 Organic impurities
- 7.0 Biological monitoring
- 8.0 Sewage Works Control Methods
- 9.0 Radiochemical methods

The actual methods and reviews are produced by smaller panels of experts in the appropriate field, under the overall supervision of the appropriate working group and the main committee.

The names of those associated with this method are listed inside the back cover. Publication of new or revised methods will be notified to the technical press, whilst a list of Methods in Print is given in the current HMSO Sectional Publication List No 5.

Whilst an effort is made to prevent errors from occurring in the published text, a few errors have been found in booklets in this series. Correction notes and minor additions to published booklets not warranting a new booklet in this series will be issued periodically as the need arises. Should an error be found affecting the operation of a method, the true sense not being obvious, or an error in the printed text be discovered prior to sale, a separate correction note will be issued for inclusion in that booklet.

L R PITTWELL

Secretary and Chairman

11 August 1988

Warning to Users

The analytical procedures given in this booklet should only be carried out by competent trained persons, with adequate supervision when necessary.

Local Safety Regulations must be observed.

Laboratory procedures should be carried out only in properly equipped laboratories.

Field Operations should be conducted with due regard to possible local hazards, and portable safety equipment should be carried.

Care should be taken against creating hazards for one's self, one's colleagues, those outside the laboratory or work place, or subsequently for maintenance or waste disposal workers. Where the Committee have considered that a special unusual hazard exists, attention has been drawn to this in the text so that additional care might be taken beyond that which should be exercised at all times when carrying out analytical procedures. Reagents of adequate purity must be used, along with properly maintained apparatus and equipment of correct specifications. Specifications for reagents, apparatus and equipment are given in manufacturers' catalogues and various published standards. If contamination is suspected, reagent purity should be checked before use. Lone working, whether in the laboratory or field, should be discouraged.

The best safeguard is a thorough consideration of hazards and the consequent safety precautions and remedies well in advance. Without intending to give a complete checklist, points that experience has shown are often forgotten include: laboratory tidiness, stray radiation leaks (including ultra violet), use of correct protective clothing and goggles, removal of toxic fumes and wastes, containment in the event of breakage, access to taps, escape routes, and the accessibility of the correct and properly maintained first-aid, fire-fighting, and rescue equipment. Hazardous reagents and solutions should always be stored in plain sight and below face level. Attention should also be given to potential vapour and fire risks. If in doubt, it is safer to assume that the hazard may exist and take reasonable precautions, rather than to assume that no hazard exists until proved otherwise.

There are numerous handbooks on first aid and laboratory safety. Among such publications are: 'Guide to Safe Practices in Chemical Laboratories' and 'Hazards in the Chemical Laboratory', issued by the Royal Society of Chemistry, London: 'Safety in Biological Laboratories' (Editors Hartree and Booth), Biochemical Society Special Publication No 5. The Biochemical Society, London, which includes biological hazards; and 'The Prevention of Laboratory Acquired Infection', Public Health Laboratory Service Monograph 6, HMSO, London.

It cannot be too strongly emphasised that prompt first aid, decontamination, or administration of the correct antidote can save life; but that incorrect treatment can make matters worse. It is suggested that both supervisors and operators be familiar with emergency procedures before starting even a slightly hazardous operation, and that doctors consulted after any accident involving chemical contamination, ingestion, or inhalation, be made familiar with the chemical nature of the injury, as some chemical injuries require specialist treatment not normally encountered by most doctors. Similar warning should be given if a biological or radiochemical injury is suspected. Some very unusual parasites, viruses and other micro-organisms are occasionally encountered in samples and when sampling in the field. In the latter case, all equipment including footwear should be disinfected by appropriate methods if contamination is suspected. If an ambulance is called or a hospital notified of an incoming patient give information on the type of injury, especially if poisoning is suspected, as the patient may be taken directly to a specialised hospital.

Identification of Unknown Organic Substances

In the past, organic substances were identified by their chemical and physical properties, usually, but not always, after separation. This was aided by the preparation of derivatives and whether these derivatives had the expected properties.

The use of chemical and physical properties should not be entirely excluded even now. It is useful to know whether a substance is acidic or basic and in what it is soluble. Plenty of reference works are available. There are a number of additional techniques which have been developed, these include Mass Spectrometry, infra red and ultra violet absorptiomety, nuclear magnetic resonance spectrometry, as well as various techniques based on chromatographic elution times and electrophoretic separation. All have their own special uses and limitations. Specialist texts should be consulted. A brief summary follows:

Mass Spectrometry

This is one of the most favoured methods, usually with prior separation by G C or HPLC.

The mass spectrum of a single substance is dependent to a large extent on the type of ion source used and also on the spectrometer. Occasionally, compounds, some quite unusual, can be formed in the instrument and cause interference. Several good atlases of spectra exist (see Ref 16); but care is necessary when identifying an unknown substance. Some inorganic compounds can be detected even without the use of plasma sources.

IR and UV Absorptiometry

These techniques are only useful if a high concentration or some solid is available. IR can be used in a reflectance mode for examining insoluble material. Instruments are subdivided by wavelength range used. The absorption bands are indicative of structural groups, but the molecular vibrations involved are also affected by the surrounding parts of the molecule. This can cause quite marked frequency variations for a single radical. Thus the cyanide frequency depends on the adjacent bonding or coordination, and the carbonate frequency depends on the pH. Water can only be used as a solvent for a very limited part of the IR spectrum due to its own strong IR absorption bands. Several good spectral indexes are available (see Ref 17).

NMR

This form of spectrometry is rarely used except for special problems and requires a relatively high concentration of sample. The spectrum varies markedly with the resolution of the instrument. It is chiefly used for elucidating bonding and structure.

Electrophoresis

This technique is used to separate and identify charged ions, especially amino acids and peptides.

CG and Other Chromatographic Indexes

These can often be used for tentative identification of trace components. The index is dependent on the column used and on the eluent. The more indices obtained for a substance (using columns of different polarity etc), the smaller the number of substances that need to be considered in the final identification. These techniques can sometimes be used to show that a substance is not present at above the chromatographic limit of detection. This booklet gives details of one method, the Linear Temperature Programmed Gas Chromatographic Retention Index (or LTPRI). See also Refs 13, 15 and 20.

Introduction to LTPRI

While Gas Chromatography coupled to a Mass Spectrometer is usually the method of choice for the identification of unknown compounds detected by gas chromatography, there are laboratories which lack such facilities and also investigations where the use of an alternative method of identification is required or additional confirmation is needed. The procedure outlined in this booklet provides such an alternative (1-3).

Unknown compounds found in water may be tentatively identified from their gas chromatographic linear temperature programmed retention indices (LTPRIs). Normally, retention indices are calculated for isothermal conditions and related to the retention times of members of a homologous series of n-alkane standards and quoted in terms of carbon number $\times 100$ (Kovat's Indices); but environmental samples usually contain organic compounds with a wide range of boiling points which cannot be eluted from a gas chromatograph at one single temperature. Hence in this procedure, the equivalent carbon number or retention index is calculated using a linear temperature programmed gradient. The measured LTPRI values are compared with these in a central computer library or table containing data for relevant compounds, generated under 'ideal' conditions, thus enabling tentative identifications to be made.

Retention times vary with the type of column used (including method of preparation) and also with its age and prior usage. In addition they also vary with the elution conditions. Hence, it is essential that the columns and conditions used be as identical as is possible with those used when compiling the inventory, and that frequent recalibrations be made (as experience dictates) in order to allow for the effects of ageing and use. Examples of the effects of column variation and age are included in the test data.

This procedure is intended to fit in with other laboratory operations, and so may in part, but not in its entirety, be very flexible. Hence, the usual method format has been modified, and only those parts of the method requiring rigid standardization have been given in detail. All other steps are only given in outline. When seeking to identify a compound, users should take into account the effects of any preliminary steps which may eliminate some possible substances. Blanks have not been mentioned, but must not be forgotten. It would not be helpful, having identified a substance, to find that it originated from a reagent and not from the original sample.

While intended as a means of reducing the list of possibilities which must be checked when identifying an unknown Gas Chromatographic peak, there is the possibility of using the procedure to confirm the absence of a substance in identifiable amounts by noting whether there are any peaks present which, within analytical error, might be attributable to that substance.

Using an electron-capture detector (ECD), peaks may be seen in the chromatograms which are due to compounds present at a concentration too low to be identified by GC-MS. Whilst ECD does not respond well to n-alkanes, LTPRIs can be calculated and tentative identifications obtained, provided the n-alkane standards or a series of other EC responsive compounds such as the n-chloralkanes, etc are run at sufficiently high concentrations. (Refs 18 and 20)

Recently, commercial instruments have been developed using a variety of detectors—ECD, FID, ATD, FPD, PID and MS. In addition homologous series of compounds for use as retention index standards with such detectors are also available (Ref 19).

See also published Health and Safety Executive Work (Ref 20)

Measurement of Linear Temperature Programmed Retention Indices

1 Performance Characteristics of the Procedure	1.1	Substances Identified	Substances, soluble in organic solvents, giv- ing recognizable gas chromatographic peaks with either non-polar (polydimethylsiloxane) or polar (polyethyleneglycol or similar), coated columns (for example OV1 or Carbowax 20M).
	1.2	Sample Types	Waters, soils and sediments.
	1.3	Basis of the Procedure	Extraction of the substances to be identified into a suitable organic solvent, followed by gas chromatography with either a polar or non-polar column or on both types of column, followed by location of the GC peak for the substance relative to the peaks of n- alkanes obtained under the same standard conditions. Other markers may be used instead of alkanes.
	1.4	Range of Application	Substances with gas chromatographic peaks lying between $n-C_6H_{14}$ and $n-C_{40}H_{82}$ see also Section 10.
	1.5	Typical Standard Deviation	See Tables 1, 2 and 3.
	1.6	Limiting Lower Concentration	Dependent on sensitivity of the substance to a Flame Ionization Detector, or other detector if used.
	1.7	Interferences	Substances with similar Retention Indices and solubilities may cause confusion of identity. Some substances decompose. The decompo- sition products may give anomalous peaks. Large amounts of substances, especially the solvent, may cause imprecision. A few com- pounds give diffuse peaks which may not register on some automatic computing instru- ments. Ageing of the column may cause slight migration of the peaks, especially for polar compounds. This phenomenon is use dependent. With non-polar columns the shift is small, 1 to 2 units gradually increasing to about 10; but with polar the shift will increase more rapidly to 10 to 50 units. The degree of shift is also compound dependent, see Ref 3.
	1.8	Time for analysis	About one hour per sample, but very depen- dent on computer facilities available.

2.1 Sample Preparation

Samples are extracted into a suitable solvent which should, if possible, be more volatile than the substance to be identified, or whose presence is sought. Acidic compounds should be extracted from acid solution, bases should be extracted from alkaline solution; this may preclude some solvents—ethers are soluble in acids.

2.2 Gas Chromatography

The extract either has a reference mixture of n-alkanes (spread uniformly over the probable range of LTPRI values), or a series of easily detected compounds with accurately known RI, such as n.chloroalkanes or n-alkylbis (trifluoromethyl) phosphine sulphides (Ref 19), coinjected with it or added to it. Alternatively, a few substances of known LTPRI with values close to that of the substance suspected may be used as standards. If necessary for clarity, the n-alkane plot can be run as a separate external standard provided adequate control substances are added to each run to ensure accurate correlation.

The amount of standard used must be based on experience, but should be just sufficient to give clear markers on the chromatogram. The amount of sample used will depend on the amount of material available and on the size of the peaks produced in the chromatogram (See Introduction, last paragraph and Section 5.1 first paragraph).

2.1 The extract is examined by gas chromatography with flame ionization or any other suitable detector using either or both of two standard columns which have been precalibrated using a mixture of n-alkanes. (See Sections 3 and 4).

2.3 Calculation of the Index

The GC/FID chromatogram for the extract is compared with the calibration chromatogram (or the plot of the retention times for the n-alkanes added to the sample). Figs 1-5 show typical curves for various column types.

2.3.1 The LTPRI of the peak (or peaks) to be tentatively identified is calculated first by noting the two closest n-alkanes, one on either side of the peak to be identified, and then by measuring the distance (time) that the mid point of the peak to be identified is along a smooth curve passing through the elution times for the various alkanes, measurement being from the nearest alkane peak below the peak to be identified.

2.3.2 The first two numbers of the LTPRI are the number of carbon atoms in the lower reference n-alkane (the first number is zero for nonane and below); the second two numbers are the percentage time (or chart trace distance) between the n-alkane peak designated and the n-alkane peak next above it, corrected for the slight variation of retention time with carbon number. (This curve is slightly S-shaped).

2.3.3 If reference substances other than n-alkanes are used (as is now commonly the case), calculations are made so that the index obtained is still n-alkane based.

2.4 Analytical Quality Assurance

Because columns deteriorate, periodic quality checks are essential using either a reference n-alkane mixture or a selection of known substances.

It is advisable, if the substances are available, to compare the peak from the sample with peaks of the probable substances obtained under identical conditions. Good correspondence does not guarantee identification, but it does greatly limit the number of probable compounds. The presence of a hitherto unlisted compound can occur.

3 Standard Columns 3.1 Non-Polar

A non-polar polydimethylsiloxane PS 255 capillary column or similar OVI column. (See Fig 1 for a typical chromatogram) (Note that in Tables 4 and 5 most non polar column data are listed as OV1, data for PS 255 are identical within normal variations).

3.2 Polar

(The performance of both these columns changes more rapidly with use than does that of the non-polar column above. Regular checking of performance and, if necessary, replacement are essential).

EITHER

3.2.1 A polar Carbowax 20M column (Figs 2-4 show the effects of various methods of coating on the curves obtained)

OR

3.2.2 A polar Superox 0.6 column (See Fig 5 for a typical curve).

3.3 Dimensions— approximately 50 m of 0.2 mm bore, coating thickness 0.2 μ m.

3.4 Availability— all three columns are available commercially, but preparational details, which are very intricate, are given in Ref 3, a copy, of which is deposited in the Department of the Environment Library.

Commercial instruments with twin columns and built in computers for retention index calculations are available.

4 Chromatographic
ConditionsChromatograph: The test data given in this booklet were obtained using an Erba
Science 4160 chromatograph, columns being changed as required.

Data processing: the peaks given as illustration were acquired and retention times measured using a Hewlett Packard 3390A reporting integrator fitted with input/output board (option 100) and interfaced with a Digital Equipment Corporation VAX 11/780 computer which was used for both data storage and calculation of LTPRIs using a polynomial curve fitting technique.

Any other equivalent equipment giving a comparable or better performance may be used. Note that information is given for manual calculation or use of other data processing equipment. The operating conditions which follow were those used to obtain the test data. If other equipment is used, follow the manufacturer's instructions and optimize conditions to achieve comparable indices.

Comparable results have been obtained on several other makes of gas chromatograph.

4.1 Operating conditions used to obtain the test data with the non-polar column.

Carrier gas:	Hydrogen; head pressure set such that at ambient temperature the elution time for methane (column hold-up time) is 120 s. (See Section 9)
Injection:	Split; injector vent flow rate approximately 30 ml/min (split ratio approximately 15:1), injector temperature 200°C. Volume injected: $1 \mu l$ of sample. Standard coinjection 1.8 μl . Recommended concentrations are 400 $\mu g/ml$ for dissolved solid samples and 0.4 $\mu l/ml$ for liquid extract samples.
Detection:	Flame ionization; detector temperature 350°C; detector gas pressures: hydrogen 0.4 kg/cm ² , air 1.5 kg/cm ² . Note some commercial instruments use electron capture detector (usually with chloroalkane, n-alkylbis (trifluoromethyl) phosphine sul- phides or similar standards). Other detectors may be used for special substances (see Introduction to LTPRI, final paragraph).
Oven temperature:	30° C for injection then programmed immediately to rise to 330° C at 4° C/min and then held at 330° C until no further n-

4.2 Operating conditions used to obtain the test data with the Polar columns

alkanes eluted. See also 4.3.

Carrier gas: Hydrogen; head pressure set such that at 60°C the elution time for methane (column hold-up time) is 120 s. (See Section 9).

Injection: Split; injector vent flow rate approximately 30 ml/min (split ratio approx 15:1); injector temperature 200°C. Recommended

concentrations are 400 μ g/ml for dissolved solid samples and 0.4 μ l/ml for liquid extract samples.

- Flame ionization; detector temperature 250°C; detector gas pressures; hydrogen 0.4 kg/cm², air 1.5 kg/cm². Note some commercial instruments use electron capture detectors (usually with chloroalkane or similar standards). Other detectors may be used for special substances.
- Oven temperature: 60°C for injection then programmed immediately to 220°C at 4°C min and held for 20 min.

Carbowax 20M columns are not usable below 60° C and not reliable above 220°C. However, their stronger absorptive capacity makes them viable for many substances eluting at <40°C on other columns. The range for Superox 0.6 is 40–270°C.

4.3 Variant Oven Temperature Programmes. Often, the same heating programme is used with both columns, and commercial instruments are available with both columns in the same furnace operated simultaneously; however, for many substances it is better to operate each column separately with different heating programmes, as for instance in Sections 4.1 and 4.2 above. Whatever the variation chosen, standards and samples must be treated in exactly the same way when determining indices.

Indices may be calculated manually if necessary, but more accurate indices can be calculated, provided adequate computor facilities are available, see the Appendix and Section 5.2.

5.1 Manual Calculation using a Spline

Detection:

The initial GC plot of alkane number against retention time will probably be a flattened S shape. The degree of curvature is dependent on the instrument used, and the heating programme chosen. A few are almost linear. It is this non-linearity which makes it necessary to take the shape of the curve into account when calculating a retention index from retention time data. Occasionally, overloading may occur, especially with the Carbowax column, making peaks hard to locate. If this happens, either resort to a differential plot to locate the peaks, or dilute the sample and rerun the chromatogram.

If the data cannot be fed to a suitably programmed computer for curve fitting and determination of the LTPRI; it should be plotted as a graph. Use of a very large sheet of graph paper is recommended (eg 1 m \times 2 m) so that it is possible to subdivide the space between alkane carbon numbers sufficiently to estimate the unknown substance peak location to an accuracy of +5% or preferably even +1%. Plot the graph of the number of carbons in the standard alkanes versus their elution times, using a plastic spline ruler held by many spline weights. The flexibility of the spline will make good allowance for the overall curvature of the graph and the effect of remote points on the section of main interest. The weights should be located at points corresponding to alkane elution times and, when obtaining a smooth curve, should not be moved more than the experimental error would allow. Superimpose the plot from the sample, using either the control additions or the n-alkane additions to align the curves. Identify the pair of alkanes between which the peak to be indexed falls and measure the percentage distance along the curve from the lower of the two alkanes to the peak intercept. This is best done either by having a fine calibrated scale on the side of the spline itself or by use of a planimeter (as used for measuring distances on maps). Then calculate the distance along the curve that the peak to be identified is beyond the lower alkane peak as a percentage of the distance between the two alkane peaks. (See Section 2.4.2 for how to express the index).

The LPTRI so obtained may then be compared with data in Tables 4 and 5, or in the library of compounds held in the WRC data system, and a list of identifications produced in probability order.

If substances other than n-alkanes are used (see Ref 19, or other suitable materials of known index), use the appropriate Retention Index numbers instead.

5 Calculation of Indices

5.2 See Ref 7 for yet another alternative approximate calculation technique. See Ref 21 for a general reference to the cubic spline technique with a listing of available FORTRAN discs.

6 Substance	6.1 Tentative Identification			
Identification	6.1.1 Identification of an unknown			
	Consult tables 4 and 6 which list already determined indices for methyl silicone and polyethylene glycol columns respectively. Always compare data only with that obtained using the same column. (See also 6.3 below)			
	6.1.2 Verification of the presence or absence of a known substance.			
	Tables 5 and 7 give Retention Indexes for a list of known substances listed by column type as above.			
	6.2 Corroboration of Data			
	Prepare solutions of suspected compounds in the same solvent and spike the sample with them and rerun on the same column to see if the elution peaks coincide.			
	6.3 New Data			
	The Water Research Centre collect data on newly measured substances. For enquiries on additions to the tables and new indices contact the address given below. If giving or enquiring about indices, always state the column used.			
	Water Research Centre or Medmenham Laboratory			
	Stevenage Laboratory PO Box 16, Marlow			
	Elder Way SL7 2HD Stevenage Herts SC1 1TH United Kingdom			
	United Kingdom (Henley on Thames (0491) 571531) (Stevenage (0438) 312444)			
	WRC also keep a record of data from a variety of non-standard columns.			
7 Commonly Used Extraction Solvents	The following are the most commonly used solvents for extracting samples: n-Pentane Dichloromethane Diethyl ether n-Hexane and Carbon disulphide may also be used for some compounds			
8 Standard Substances	The original standards on which the indices are based are normal alkanes from pentane or hexane to $C_{40}H_{82}$. Above $C_{26}H_{54}$ alternate alkanes may be used.			
	8.1 A series of other commonly encountered substances with a useful range of volatil- ities eg n-chloroalkanes o <u>r</u> another homologous series, such as n-alkylbis (trifluoromethyl) phosphine sulphides, with better detection characteristics than n-alkanes may be used provided their retention indices are accurately known. Readily detected substances with accurately known RI may also be added as internal standards. See also Ref 19.			
9 Hazards	Hydrogen is flammable and mixtures with air etc are potentially explosive. If released into air as a high pressure jet it can be self igniting. A good safety guide is given in Ref 14. Alternatively, helium or other gas may be used, but the effect on index measurement should be checked.			
	All the solvents are flammable and volatile, some are narcotic and toxic. Ethers tend to form explosive peroxides on storage (see Ref 12). Ensure good ventilation, absence of flames and sparks and check the hazard specific to the chosen solvent before use.			

Provided columns and conditions are standardised, other columns than those given here can be used. WRC has list of Indexes for many compounds on a variety of columns.

If high temperature capillary column chromatographs are used, it has been shown that the n-alkanes provide a useful series of peaks up to C_{70} and even to C_{80} ; though at such temperatures and molecular weights many compounds will decompose and give confused multiple peaks due to the fragments; charring may also occur.

Other detectors than FID can be used with other homologous series of compounds with known LTPRI than n-alkanes. (See Ref 19).

A.1 Rigorous Calculation of Linear Temperature Programmed Retention Indices

The Kovats method of assigning retention indices calculates the logarithmeic retention of a solute interpolated between those of two standard compounds (4). The standard compounds can be comprised of any homologous series of organic compounds. The standards most commonly adopted are the n-alkane series. The logarithmic relationship which prevails under isothermal gas chromatographic operating conditions is replaced, under linear temperature programmed elution, by a near-linear relationship expressed by the equation of Van Den Dool and Kratz (5)

 $I = 100z + 100 \quad \frac{[t_{Rx} - t_{Rz}]}{[t_{Rz+1} - t_{Rz}]}$

where I = linear temperature programmed retention index

 t_{Rx} = retention time of unknown

 t_{Rz} = retention time of the n-alkane (with Z carbon atoms) eluting immediately before the unknown

 $t_{Rz\,+\,1}\!=\!retention$ time of the n-alkane eluting immediately after the unknown

However, it has been clearly demonstrated that the linear relationship between retention data for the n-alkane series does not strictly hold true especially at the low molecular weight end of the series (6). Thus other approaches to the fitting of a mathematical function to retention time data have been explored. These have included the application of polynomial fits and various cubic spline techniques (6,7,8).

The method used when calculating the linear programmed retention indices given in Tables 1-5 was a computerized polynomial routine which used the Water Research Centre in-house computer—a DEC VAX 11/780. It utilized two Fortran sub-routines which are derived from the DEC VAX NAG library and which is not generally accessible. However the following text provides references which give the information on which these sub-routines are based and from which users may work out their own programme.

The method employed is due to Forsythe (9) and is based upon the generation of a set of polynomials orthogonal with respect to summation over the normalized data set. The extensions due to Clenshaw (10) to represent these polynomials as well as the approximating polynomials in their Chebyshev-series forms are incorporated. The modifications suggested by Reimsch and Gentleman (11) to the method originally employed by Clenshaw for evaluating the orthogonal polynomials from the Chebysev-series representations are used to give greater numerical stability.

The routine determines the least squares polynomial approximations of degrees 0, 1 K to the set of data points (X(R), Y(R)) with weights W(R) (R = 1, 2, ..., M). The value of K + 1 when K is the maximum degree required is specified by the user.

The approximation of degree I has the property that it minimizes SIGMA (I), the sum of the squares of the weighted residuals EPS (R) (R = 1, 2, ..., M), where

EPS(R) = W(R) X (Y(R) - F(R))

and F(R) is the value of the polynomial of degree I at the Rth data point.

Each polynomial is represented in the Chebyshev-series form with normalized argument X. This argument lies in the range -1 to +1 and is related to the original variable X by the linear transformation

 $X = (2 \times X - XMAX - XMIN)/(XMAX - XMIN).$

Here XMAX and XMIN are respectively the largest and smallest values of X(R). The polynomial approximation of degree I is represented as

 $\begin{array}{l} 0.5 \times A \ (I+1,1) \times T_0(\overline{X}) + A \ (I+1,2) \times T_1 \ (\overline{X}) \\ + A \ (I+1,3) \times T_2 \ (\overline{X}) + \ldots + A \ (I+1,I+1) \times TI \ (\overline{X}) \end{array}$

where TJ (X) is the Chebyshev polynomial of the first kind of degree J with argument (\overline{X}) .

For each value of I (I = 0,1,...K) the routine produces the values of A(I+1, J+1) (J=0, 1...I), together with the value of the root mean square residual S (I+1) defined by the square root of SIGMA (I)/(M-I-1). In the case M=I+1 the routine sets the value of S (I+1) to zero.

A further routine evaluates the polynomial:

 $\begin{array}{l} 0.5 \times A(1) \times T_0 \ (\overline{X}) + A \ (2) \times T_1 \ (\overline{X}) + A \ (3) \times T_2 \ (\overline{X}) + ... \\ + A \ (NPLUS \ 1) \times T_N \ (\overline{X}) \end{array}$

for any value of \overline{X} satisfying $-1 \leq X \leq 1$. Here Tj (X) denotes the Chebyshev polynomial of the first kind of degree J with argument \overline{X} . The value of NPLUS1 = N + 1 is prescribed by the user.

While the mathematics of this system of calculation appears complex it is nevertheless simple in operation and provides reliable 'best fit' data.

A.2 Examples of Computer Calculation Programmes

The following examples shows how such a programme was developed for use on computers using IBM and BBC 'BASIC'. They employ a cubic spline approach.

BBC users see Section A2.1. IBM users see either A2.2 or A2.1 plus A2.3.

For more information, using Fortran, see also Ref 21. It is known that other suitable programmes also exist. It is suggested that new users of this method check the suitability of their chosen programme.

A2.1 Using BBC 'BASIC' 1REM 2REM 3REM 4REM 5REM 6REM 7REM 9 10ONERROR:REPORT:END 11 90GOSUB 1000: REM initialise variables 99 100FORTT% = 0 TO 1110GOSU 2000: REM input-data 120GOSU 1500: REM Test spline against existing routines 186NEXT **900END** 999 1000REM Subroutine to initialise variables 1010 1100 DIMx(40,.y(400, knots(40),U(40) 1110 DIM Unknown X(40), Old-calc(40) 1490RETURN 1499 1500REM Subroutine to test spline against existing progam 1509 1510PRINT' 'titles': @% = &20306: REM Change to PRINT USING ff.fff 1519 : REM 1520TIME = 0:dydx1 = 1E26:dydxn = 1E26:GOSUB10000:T% = TIME1530PRINT"Time taken to calculate 2nd order derivatives = "T%/100;" secs." ' 1540TIME = 0: FORI% = TOM%:X = UnknownX(I%):GOSUB11000:NEXT:T% = TIME 1550PRINT"Time taken to calculate interpolated value = "T%/100*M%);" secs" 1559 1560PRINT' ' " Retention Calculated indices" 1570PRINT" time/min new old" ' ' 1600FORJ% = 1TOM%1610@% = &20306:PRINT" "UnknownX(J%):" ": 1620@% = &20106:X = UnknownX(J%):GOSUB11000: PRINTspline" "

1630@% = &20106: PRINTOld-calc(J%) 1650NEXT 1990RETURN 1999 2000REM Subroutine input-data 2010 2050REM Routine to input test data from DATA statements 2099 2100 READ N% : REM Input number of x & y values 2105 READ titles : REM Input file title 2109 2110 FOR I% = 1 TO N% 2120 READ y(I%),x(I%) : REM Input N% pairs of x,y values 2130 NEXT I% 2149 2150 READ M% : REM Input number of unknown values 2159 2160 FOR I% = 1 TO M% 2170 READ Old-cal (I%) : REM Input original calculated values 2180 READ UnknownX(I%) : REM Input unknown x values 2190 NEXT I% 2199 2290RETURN 2299 **** Test Data **** 2500rem 2509 2510DATA 25."Non-Polar Column (24 standards)" 2519 2520DATA 700. 4.319 2530DATA 800. 6.448 900. 9.629 2540DATA 2550DATA 1000. 13.455 2560DATA 1100. 17.439 1200. 21.340 2570DATA 2580DATA 1300. 25.062 2590DATA 1400. 28.578 2600DATA 1500. 31.897 2610DATA 1600. 35.049 2620DATA 1700. 38.037 2630DATA 1800. 40.899 2640DATA 1900. 43.640 2650DATA 2000. 46.283 2660DATA 2100. 48.828 2200. 51.288 2670DATA 2680DATA 2300. 53.659 2690DATA 2400. 55.937 2700DATA 2500. 58.123 2710DATA 2600. 60.220 2720DATA 2800. 64.149 2730DATA 3000. 67.823 2740DATA 3200. 71.298 2750DATA 3600. 78.863 2799 2800DATA 8 2809 2810DATA 849. 8.018 2820DATA 975. 12.709 2830DATA 1148. 19.378 2840DATA 1248. 23.167 2850DATA 1252. 23.306 2860DATA 1312. 25.477 2870DATA 1913. 44.021 2880DATA 2505. 58.228 2999

3010DATA 20. "Polar Column (20 standards)" 3019 3020DATA 1000. 5.014 3030DATA 1100. 7.262 3040DATA 1200, 10,211 3050DATA 1300. 13.541 3060DATA 1400. 16.981 3070DATA 1500. 20.361 3080DATA 1600. 23.621 3090DATA 1700, 26,736 3100DATA 1800. 29.720 3110DATA 1900, 32,580 3120DATA 2000. 35.325 3130DATA 2100. 37.957 3140DATA 2200. 40.493 3150DATA 2300, 42,936 3160DATA 2400. 45.298 3170DATA 2500, 47,595 3180DATA 2600. 49.825 3190DATA 2800. 54.104 3200DATA 3000. 58.143 3210DATA 3200. 62.658 3219 3300DATA 6 3309 3310DATA 1009. 5.174 3320DATA 1234, 11,339 3330DATA 1265. 12.378 3340DATA 1474. 19.473 3350DATA 2636. 50.480 3360DATA 3104. 60.591 9999 10000 REM Subroutine to calculate spline 10010 10050REM Given two arrays x() and y() this procedure 10060REM calculates the second derivatives of the 10070REM interpolating function at the tabulated points x(). 10099 10100REM **** Arguments **** 10109 10110REM Global x() x values 10120REM y() y values 10130REM knots() second derivatives of the 10140REM interpolating function 10150REM working array U() 10199 10200REM N% number of points 10210REM dydxl dy/dx at first point 10220REM (signals natural spline if > 1E25) 10230REM dydxn dy/dx at last point (signals natural spline if > 1E25) 10240REM 10250REM On.Un.sig.p working variables 10299 **** Set lower end point condition **** 10300REM 10309 10310REM Set condition to be a natural spline 10319 10320 If dydx1 > 1E25 knots(1) = 010330 If dydx1 > U(1) = 010339 10340REM Set to specified first derivative 10349 10350 If dydx1 < 1E25 knots(1) = -0.510360 If dydx1 < 1E25U(1) = (3/(x(2) - x(1)))*((y(2) - y(1))/(x(2) - x(1)) - dydx1)

.

10399 **** Decomposition loop of triangonal matrix **** 10400REM 10409 10450 For I% = 2 To N% sig = (x(I%) - x(I% - 1))/(x(I% + 1) - x(I% - 1))10460 p = sig*knots (I% - 1) + 210470 10480 knots (I%) = (sig - 1)/p10489 U(I%) = (y(I% + 1) - y(I%))/(xI% + 1) - x(I%))10490 10500 U(I%) = U(I%) - (y(I%) - y(I% - 1))/(x(I%) - x(I% - 1))U(I%) = (6*U(I%)/(xI%+1) - x(I%-1)) - sig*U(I%-1))/p10510 10520NEXT I% 10549 10550REM **** Set higher end point condition **** 10559 10560REM Set condition to be a natural spline 10569 10570 If dydxn > 1E25 Qn = 0 10580 If dynxn > 1E25 Un = 010589 10590REM Set to specified first derivative 10599 10600 If dydxn < 1E25Qn = -0.510610 If dydxn < 1E25 Un = (3/(xN%) - x(N% - 1))10620 If dydxn < 1E25 $Un - Un^{*}(dydxn - (y(N\%) - \bar{y}(N\% - 1))/(x N\%) - x(N\% - 1)))$ 10629 10630 knots (N%) = (Un - Qn*U (N% - 1))/(Qn*knots (N% - 1) + 1)10639 10650REM **** Backsubstitution loop of tridiagonal algorithm **** 10659 10660 For I% = N% - 1 TO 1 STEP -1 10670 knots(I%) = knots (I%) * knots (I% + 1) + U(I%) 10680 NEXT 1% 10689 **10690 RETURN** 10699 **11000REM** Subroutine Function spline 11010 11050REM Given two arrays x() and y() and a value of x 11060REM this procedure calculates a cubic-spline interpolated 11070REM value y 11099 11100REM **** Arguments ***** 11109 11110REM Global x() x values y values 1120REM y() 1130REM knots () second derivatives of the 1140REM interpolating function 11199 11200REM N% number of points 11210REM Х x values for which calculated y value 11220REM is required Y 11230REM Local Calculated y value, interpolated using 11240REM cubic spine a,b,h working variables 11250REM 11260REM low, high 11299 11300REM **** Find the appropriate spline using **** **** 11310REM a bisection routine **** 11319 $11350 \quad low = 1$ 11360 high = N%11370 K% = (high + low)/211380 If (x(K%)>X) high = K% ELSE low = K%

```
11390 If (high-low)>=2 GOTO 11370
11399
              **** Interpolate using cubic between 'low' and 'high'; ****
11400REM
11409
11410 h = x(high) - x(low)
11450 a = (x(high) - X)/h
11460 b = (X - x(low))/h
11470 Y = a^{*}y(low) + b^{*}y(high)
11480 spline = Y + (a 3 - a)*knots (low) + (b 3 - b)*knots(high))*h 2/6
11490RETURN
A2.2 Using IBM (GW Basic Compatible)
1 REM
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM
9 REM
10 REM ONERROR: REPORT: END
11 REM
90 GOSUB 1000 :REM initialise variables
99 REM
100 FOR TT\% = 0 TO 1
110 GOSUB 2000 :REM inputdata
120 GOSUB 1500 :REM Test spline against existing routines
186 NEXT
900 END
999 REM
1000 REM Subroutine to initialise variables
1010 REM
1100 DIM X(40), Y(40), KNOTS(40), (U)(40)
1110 DIM UNKNOWNX(40), OLDCALC(40)
1490 RETURN
1499 REM
1500 REM Subroutine to test spline against existing program
1509 REM
1519 REM
                                 :REM
1520 TIME = 0:DYDX1 = 1E + 26:DYDXN = 1E + 26:GOSUB 10000:T% = TIME
1530 PRINT"Time taken to calculate 2nd order derivatives = T\%/100;" secs." '
1540 TIME = 0: FOR I% = 1 TO M%:X = UNKNOWNX(I%):GOSUB 11000:NEXT:T% = TIME
1550 PRINT"Time taken to calculate interpolated value
                                                    = "T%/(100*M%);" secs"
1559 REM
1560 PRINT' ' " Retention
                             Calculated indices"
1570 PRINT" time/min
                                      old" ' '
                             new
1600 FOR J% = 1 TO M%
1610 PRINT"
                ";UNKNOWNX(J%);"
1620 X = UNKNOWNX(J%):GOSUB 11000:PRINT SPLINE"
                                                          ":
1630 PRINT OLDCALC(J%)
1650 NEXT
1990 RETURN
1999 REM
2000 REM Subroutine inputdata
2010 REM
2050 REM
             Routine to input test data from DATA statements
2099 REM
2100 READ N%
                                : REM Input number of x & y values
2105 READ TITLES
                               : REM Input file title
2109 REM
2110 FOR I% = 1 TO N%
2120 READ Y(1%),X(1%)
                                : REM Input N% pairs of x,y values
2130 NEXT 1%
```

2149 REM 2150 READ M% : REM Input number of unknown values 2159 REM 2160 FOR 1% = 1 TO M% : REM Input original calculated values 2170 READ OLDCALC(I%) 2180 READ UNKNOWNX(I%) : REM Input unknown x values 2190 NEXT I% 2199 REM **2290 RETURN** 2299 REM **** Test Data **** 2500 REM 2509 REM 2510 DATA 24,"Non-Polar Column (24 standards)" 2519 REM 2520 DATA 700, 4.319 2530 DATA 800, 6.448 2540 DATA 900, 9.629 2550 DATA 1000, 13.455 2560 DATA 1100, 17.439 2570 DATA 1200, 21.340 2580 DATA 1300, 25.062 2590 DATA 1400, 28.578 2600 DATA 1500, 31.897 2610 DATA 1600, 35.049 2620 DATA 1700, 38.037 2630 DATA 1800, 40.899 2640 DATA 1900, 43.640 2650 DATA 2000, 46.283 2660 DATA 2100, 48.828 2670 DATA 2200, 51.288 2680 DATA 2300, 53.659 2690 DATA 2400, 55.937 2700 DATA 2500, 58.123 2710 DATA 2600, 60.220 2720 DATA 2800, 64.149 2730 DATA 3000, 67.823 2740 DATA 3200, 71.298 2750 DATA 3600, 78.863 2799 REM 2800 DATA 8 2809 REM 2810 DATA 849, 8.018 2820 DATA 975, 12.709 2830 DATA 1148, 19.378 2840 DATA 1248, 23.167 2850 DATA 1252, 23.306 2860 DATA 1312, 25.477 2870 DATA 1913, 44.021 2880 DATA 2505, 58.228 2999 REM 3010 DATA 20, "Polar Column (20 standards)" 3019 REM 3020 DATA 1000, 5.014 3030 DATA 1100, 7.262 3040 DATA 1200, 10.211 3050 DATA 1300, 13.541 3060 DATA 1400, 16.981 3070 DATA 1500, 20.361 3080 DATA 1600, 23.621 . . 3090 DATA 1700, 26.736 3100 DATA 1800, 29.720 3110 DATA 1900, 32.580 3120 DATA 2000, 35.325 3130 DATA 2100, 37.957

3140 DATA 2200, 40.493 3150 DATA 2300, 42.936 3160 DATA 2400, 45.298 3170 DATA 2500, 47.595 3180 DATA 2600, 49.825 3190 DATA 2800, 54.104 3200 DATA 3000, 58.143 3210 DATA 3200, 62.658 3219 REM 3300 DATA 6 3309 REM 3310 DATA 1009, 5.174 3320 DATA 1234, 11.339 3330 DATA 1265, 12.378 3340 DATA 1474, 19.473 3350 DATA 2636, 50.480 3360 DATA 3104, 60.591 9999 REM 10000 REM Subroutine to calculate spline 10010 REM 10050 REM Given two arrays x() and y() this procedure calculates the second derivatives of the 10060 REM 10070 REM interpolating function at the tabulated points x(). 10099 REM 10100 REM **** Arguments **** 10109 REM 10110 REM Global x() x values 10120 REM y() y values 10130 REM knots() Second derivatives of the 10140 REM interpolating function 10150 REM U() working array 10199 REM 10200 REM N% number of points 10210 REM dydx1 dy/dx at first point 10220 REM (signals natural spline if > 1E25) 10230 REM dydxn dy/dx at last point 10240 REM (signals natural spline if > 1E25) 10250 REM Qn,Un,sig,p working variables 10299 REM 10300 REM **** Set lower end point condition **** 10309 REM 10310 REM Set condition to be a natural spline 10319 REM 10320 IF DYDX1 > 9.999999E + 24 THEN KNOTS(1) = 0 10330 IF DYDX1 > 9.999999E + 24 THEN U(1) = 010339 REM 10340 REM Set to specified first derivative 10349 REM 10350 IF DYDX1 < 9.999999E + 24 THEN KNOTS(1) = -.5 10360 IF DYDX1 < 9.999999E + 24 THEN U(1) = (3/(X(2) - X(1)))*((Y(2) - Y(1))/(X(2) - X(1)) - DYDX10399 REM 10400 REM **** Decomposition loop of triangonal matrix **** 10409 REM 10450 FOR I% = 2 TO N% SIG = (X(I%) - X(I% - 1))/(X(I% + 1) - X(I% - 1))10460 10470 P = SIG*KNOTS(I% - 1) + 210480 KNOTS(1%) = (SIG - 1)/P10489 REM 10490 U(I%) = (Y(I% + 1) - Y(I%))/(X(I% + 1) - X(I%))10500 U(I%) = U(I%) - (Y(I%) - Y(I% - 1))/(X(I%) - X(I% - 1)) $U(I\%) = (6^*U(I\%)/(X(I\%+1) - X(I\%-1)) - SIG^*U(I\%-1))/P$ 10510 10520 NEXT I% 10549 REM 10550 REM **** Set higher end point condition ****

10559 REM Set condition to be a natural spline 10560 REM 10569 REM 10570 IF DYDXN > 9.999999E + 24 THEN QN = 0 10580 IF DYDYN > 9.999999E + 24 THEN UN = 0 10589 REM 10590 REM Set to specified first derivative 10599 REM 10600 IF DYDXN < 9.999999E + 24 THEN QN = -0.510610 IF DYDXN < 9.999999E + 24 THEN UN = (3/(X(N%) - X(N% - 1)))10620 IF DYDXN < 9.999999E + 24 THEN UN = UN*(DYDXN - (Y(N%) - Y(N% - 1))/(X(N%) - X(N% - 1))) 10629 REM 10630 KNOTS(N%) = (UN - QN*U(N% - 1))/(QN*KNOTS(N% - 1) + 1)10639 REM **** 10650 REM Backsubstitution loop of tridiagonal algorithm 10659 REM 10660 FOR I% = N% - 1 TO 1 STEP -110670 KNOTS(I%) = KNOTS(I%) * KNOTS(I% + 1) + U(I%) 10680 NEXT I% 10689 REM **10690 RETURN** 10699 REM 11000 REM Subroutine Function spline 11010 REM Given two arrays x() and y() and a value of X11050 REM this procedure calculates a cubic-spline interpolated 11060 REM value Y. 11070 REM 11099 REM **** Arguments ***** 11100 REM 11109 REM 11110 REM Global x() x values 11120 REM y() y values 11130 REM knots() Second derivatives of the 11140 REM interpolating function 11199 REM N% number of points 11200 REM x value for which calculated y value 11210 REM Х 11220 REM is required. 11230 REM Local Y Calculate y value, interpolated using 11240 REM cubic spine. 11250 REM a,b,h working variables 11260 REM low, high 11299 REM **** Find the appropriate spline using 11300 REM **** 11310 REM **** a bisection routine. **** 11319 REM 11350 LOW = 111360 HIGH = N% 11370 K% = (HIGH + LOW)/211380 IF (X(K%)>X)THEN HIGH = K% ELSE LOW = K% 11390 IF (HIGH-LOW)>=2 GOTO 11370 11399 REM **** 11400 REM Interpolate using cubic between 'low' and 'high' **** 11409 REM 11410 H = X(HIGH) - X(LOW)11450 A = (X(HIGH) - X)/H۰. .. ست 11460 B = (X - X(LOW))/H $11470 \text{ Y} = \text{A}^{*}\text{Y}(\text{LOW}) + \text{B}^{*}\text{Y}(\text{HIGH})$ 11480 SPLINE = $Y + ((A^3 - A)*KNOTS(LOW) + (B^3 - B)*KNOTS(HIGH))*H^2/6$ **11490 RETURN** Ş

Comparison of Methods of Calculation

(i) Non Polar C	olumn with 24 standards	and 8 unknown sample	es (as in 5.1.3)	
Retention time/min	Calculated by A.2	Indices by A.1	A.2–A.1	Calculated using the Van den Dool and Katz equation*
8.018	855.0	849.0	6.0	849.4
12.709	980.9	975.0	5.9	980.5
19.378	1149.2	1148.0	1.2	1149.7
23.167	1248.4	1248.0	0.4	1249.1
23.306	1252.2	1252.0	0.2	1252.8
25.477	1311.5	1312.0	-0.5	1311.8
44.021	1914.2	1913.0	1.2	1914.4
58.228	2504.9	2505.0	-0.1	2505.0

(ii) Polar Column with 20 standards and 6 unknown samples (as in 5.1.3).

Retention time/min	Calculated by A.2	Indices by A.1	A.2–A.1	Calculated using the Van den Dool and Katz equation*
5.174	1007.5	1009.0	-1.5	1007.1
11.339	1234.3	1234.0	-0.3	1233.9
12.378	1265.5	1265.0	0.5	1265.1
19.473	1473.4	1474.0	-0.6	1473.7
50.480	2629.7	2636.0	-6.3	2630.6
60.591	3111.1	3104.0	7.1	3108.4

Note if manual plotting were used using a calibrated spline (as in Section 5.1), the indices obtained would not be as accurate and would be partly dependent on the degree of time scale enlargement obtainable from the recorder. * Calculated by British Gas plc London Research Station

A2.3 Note M Tech Computer Services (4 Church Hill, Reepham Norfolk, 0603, 870620) have an inexpensive computer programme available for translating BBC Basic to IBM compatible MSDGS (IBM information).

References

- Grob, K, Grob, G, Blum, W and Walther, W. Preparation of inert glass capillary columns for gas chromatography. A revised comprehensive description. J. Chromatogr., 244, 197-208, 1982 and references cited therein.
- (2) Grob, K, Jr, Grob, G and Grob, K. Preparation of apolar glass capillary columns by the barium carbonate procedure. J. High Resolution Chromatogr. and Chromatogr. Commun. 1, 149-155, 1978, and references cited therein.
- (3) Department of the Environment Contract Report PECD7/7/118-4/84.
- (4) Kovats, E Helv. Chim. Acta, 41, 1915, 1958.
- (5) Van Den Dool, H and Kratz, P D J. Chromatogr., 11, 463, 1963.
- (6) Knoppel, H, De-Bortoli, M, Peil, A, Schauenburg, H and Vissers, H Analysis of Organic Micropollutants in Water. Proceedings of the Second European Symposium, Killarney (Ireland), Nov. 17–19, 1981, 133.
- (7) Ramsey, J D and Lee, T D J. Chromatogr., 184, 185, 1980.
- (8) Halang, W A, Langlais, R and Kugler, E Anal. Chem., 50, 1829, 1978.
- (9) Forsythe, G E K Siam, 5, 74, 1957.
- (10) Clenshaw, C W Computer J., 2, 170, 1960.
- (11) Gentleman, W M Computer J., 12, 160, 1969.
- (12) Chlorophenoxy acidic Herbicides etc in Water 1985. HMSO in this series. Methods A and B.
- (13) Waggot A, Deal E A, and Davies I W. An Inventory of Linear Temperature Programmed Gas Chromatographic Retention Indices 2nd Edn. WRC. 1987.
- (14) Safety Guide for Hydrogen. National Research Council of Canada, Ottawa, Ontario, KIAOR6, Canada.
- (15) The Sadtler Capillary G C Standard Retention Index Library Heyden Sadtler, Heyden and Sons Ltd, London
- (16) *The Eight Peak Index of Mass Sectra 3rd Edn 1983*. Royal Society of Chemistry/ University of Nottingham, Nottingham.
- (17) The Sadtler Index of Infra Red and Ultra Violet Spectra, Sadtler Philadelphia.
- (18) Nakamura, A Tanaka, R and Kashimoto, T. Retention Indexes for Electron Capture Gas Chromatography—Programmed Temperature High Resolution Capillary Columns; J. Assoc. Off Ag. Anal. Chem. 67. 129–132. 1984
- (19) Manninen, A, Kuitunen, M–L, and Julin, L, J. Chromatog. 394. 465–471. 1987.
- (20) Wright M D, Anal. Proc. 24. 309-311. 1987.
- (21) Press W U, Flannery B P, Teukolsky S A, Vetterling W J, Numerical Recipes, Cambridge University Press 1986

Address for Correspondence

(See also section 6 above for queries about Index Values).

However thoroughly a procedure may be tested, there is always the possibility of a user discovering a hitherto unknown problem. Users with information on this procedure are requested to write to:

The Secretary The Standing Committee of Analysts The Department of the Environment Romney House 43 Marsham Street LONDON SW1P 3PY England

		·	
Substance	LTPRI	Standard Deviation*	Degrees of Freedom
n butanol	0661	±1	2
Benzene	0662	±7	12
2 pentanone	0674	±1	2
1.4 dioxane	0692	±1	2
1 nitropropane	0708	±1	2
2 methyl 2 pentanol	0723	±1	2
Pyridine	0732	±6	1
1.iodobutane	0797	±1	2
2 octyne	0869		2
Hydrindane	0976	±2	12
Octanol	1056	±0.4	4
2.6 dimethylphenol	1079	±1	4
2 ethylhexanoic acid	1117	±1	3
2.6 dimethyl aniline	1130	±0.5	4
Naphthalene	1155	±2	9
Methyl decanoate	1308	±1	4
Dicyclohexylamine	1400	_	1
Methyl undecanoate	1408	±1	4
Methyl dodecanoate	1508	±1	4
Diethylphthalate	1548	±1	9
Pristane	1710	±1	9
Pyrene	2059	±6	9
Di(2-ethylhexyl) phthalate	2504	±1	9
Perylene	2811	± 11	9
Cholesterol	3091	±7	9

Table 1Typical Standard Deviations for LTPRI determined with the non polar
polydimethylsiloxane PS225 column. (data to nearest whole number, all
repeat measurements determined on different columns of the same type).

*based on the percentage section of the LTPRI (also Tables 2 and 3)

Table 2	Typical Standard Deviations for LTPRI determined with the polar
	polyethyleneglycol Carbowax 20M column

Substance	LTPRI	Standard Deviation*	Degrees of Freedom
o-Xylene	1181	±4	7
Anisole	1331	±4	7
Furfural	1447	±5	7
Pristane	1674	±4	7
Naphthalene	1710	±4	7
B-Ionone	1910	± 6	7
Acenapthene	2092	±6	7
Diethyl phthalate	2335	±6	7

Substance	LTPRI	Standard Deviation*	Degrees of Freedom
o-Xylene	1173	±2	3
Anisole	1324	± 2	3
Furfural	1431	± 2	3
Pristane	1667	± 2	3
Naphthalene	1706	±2	3
B-Ionone	1909	±1	3
Acenapthene	2092	±2	3
Diethyl phthalate	2316	±2	3

Table 3Typical Standard Deviations for LTPRI determined with a polar Superox0.6column

Table 4 Linear Temperature Programmed Retention Indices Truncated Version in Retention Index Order—Methyl Silicone Columns

Retention index	Compound name	Stationary phase
0661	butanol, 1-	OV-1
0669	benzene	OV-1
0674	pentanone, 2-	OV-1
0692	dioxane, 1, 4-	OV-1
0707	propane, 1-nitro	OV-1
0723	pentanol, 2-methyl-2-	OV-1
0732	pyridine	OV-1
0768	methane, dibromochloro	OV-1
0797	butane, 1-iodo	OV-1
0827	benzene, chloro	OV-1
0832	picoline, beta (3-methylpyridine)	OV-1
0832	picoline, gamma (4-methylpyridine)	OV-1
0846	benzene, ethyl	OV-1
0852	methane, tribromo	OV-1
0860	methane, bis-(methylthio)	OV-1
0869	disulphide, ethylmethyl	OV-1
0869	disulphide, ethylmethyl	OV-1
0876	ethane, 1, 1, 2, 2-tetrachloro	OV-1
0923	heptanone, 5-methyl-3-	OV-1
0931	toluene, 2-chloro	OV-1
0932	toluene, 3-chloro	OV-1
0936	toluene, 4-chloro	OV-1
0959	phenol	OV-1
0962	hepten-2-one, 6-methyl-5-	OV-1
0965	phenol, 2-chloro	OV-1
0975	hydrindane, cis- (hexahydroindane)	OV-1
0981	benzene, 1, 3-dichloro	OV-1
0983	toluene, alpha-chloro (benzyl chloride)	OV-1
0985	benzene, 1, 4-dichloro	OV-1
1007	benzene, 1, 2-dichloro	OV-1
1046	benzene, nitro	OV-1
1051	triazine, 2, 4, 6-trichloro-1, 3, 5- (cyanuric chloride)	OV-1
1055	ethane, hexachloro	OV-1
1056	octanol, 1-	OV-1
1076	pyrazine, 2-isopropyl-3-methoxy	OV-1
1079	phenol, 2, 6-dimethyl	OV-1
1094	aniline, 2-chloro	OV-1
1106	toluene, alpha, alpha-dichloro (benzal chloride)	OV-1
1117	hexanoic acid, 2-ethyl	OV-1
1123	phenol, 2, 4-dimethyl (m-xylenol)	OV-1
1125	phenol, 2, 5-dimethyl (2, 5-xylenol)	OV-1

Retention index	Compound name	Stationary phase
1130	aniline, 2, 6-dimethyl	OV-1
1140	phenol, 2, 4-dichloro	OV-1
1150	benzene, 1, 2, 4-trichloro	OV-1
1155	naphthalene	OV-1
1156	naphthalene	OV-1
1158	aniline, 3-chloro	OV-1
1160	pyrazine, 2-isobutyl-3-methoxy	OV-1
1161	aniline, 4-chloro	OV-1
1161	thianaphthene	OV-1
1164	borneol, 2-methyliso	07-1
1167	phenol, 3, 4-dimethyl (3, 4-xylenol)	0V-1 0V-1
1171	phenol, 4-chloro	0V-1 0V 1
1173	phenol, 3-chloro	OV-1
1182	tolulaine, 5-chioro-o-	OV-1
1102	benzene, 1 chloro 4 nitro	OV-1
1195	aniline 2-chloro-4-methyl	OV-1
1195	henzene 1-chloro-2-nitro	OV-1
1201	toluidine 6-chloro-m-	OV-1
1201	benzene bexachloro (HCB)	OV-1
1202	butadiene, hexachloro	OV-1
1202	aniline. 2. 6-dichloro	OV-1
1249	toluidine. 6-chloro-o-	OV-1
1252	toluidine. 2-chloro-p-	OV-1
1253	aniline, 2-chloro-4-methyl	OV-1
1256	toluidine, 4-chloro-o-	OV-1
1256	toluidine, 5-chloro-o-	OV-1
1259	toluene, 6-chloro-2-nitro	OV-1
1260	phenol, 4-chloro-3-methyl	OV-1
1268	toluene, 4-chloro-2-nitro	OV-1
1287	aniline, 2, 4-dichloro	OV-1
1288	aniline, 2, 5-dichloro	OV-1
1288	benzene, 3, 5-dichloronitro	OV-1
1290	benzonitrile, 2, 6-dichloro (dichlobenil)	OV-1
1301	benzene, 1, 2, 4, 5-tetrachloro	OV-1
1302	anisole, 2, 4, 6-trichloro	0V-1 OV 1
1304	phenol, 2, 3, 5-trichloro	0V-1 OV 1
1300	aniline, 2, 3-dichloro	OV-1
1212	teluene 4 ehlere 3 nitre	OV-1
1312	benzene 2 5-dichloronitro	OV-1
1315	toluene, 2, 5-diemoromitio	OV-1
1318	cyclopentadiene, hexachloro	OV-1
1322	benzene, 2, 4-dichloronitro	OV-1
1327	phenol, 2, 4, 5-trichloro	OV-1
1332	phenol, 2, 3, 4-trichloro	OV-1
1339	benzene, 3, 4-dichloronitro	OV-1
1341	anisole, 2, 3, 6-trichloro	OV-1
1344	benzene, 2, 3-dichloronitro	OV-1
1346	phenol, 2, 3, 6-trichloro	OV-1
1348	biphenyl	OV-1
1348	naphthalene, 1-chloro	OV-1
1348	naphthalene, 2-chloro	OV-1
1352	aniline, 3, 5-dichloro	OV-1
1377	aniline, 3, 4-dichloro	OV-1
1384	decalol, trans-1, 10-dimethyl-trans-9- (geosmin)	
1392	totuene, 2, 0-ainitro	
1400	uncychonexynamme undecennois agid methyl ester	07-1
1400	anaccanoic acia, metnyi ester acenaphthylene	OV-1
1415	phenol. 2-amino-4-chloro	OV-1
	Firston, - winner / vinoro	U / 1

Retention index	Compound name	Stationary phase
1435	phenol, 2, 4-dinitro	OV-1
1465	anisole, 2, 3, 4-trichloro	OV-1
1468	toluene, 2, 4-dinitro	OV-1
1490	benzene, 1-chloro-2, 4-dinitro	OV-1
1494	anisole, 2, 3, 5, 6-tetrachloro	OV-1
1494	anisole, 2, 4, 5-trichloro	OV-1
1507	dodecanoic acid, methyl ester	OV-1
1538	aniline, 4-chloro-2-nitro	OV-1
1548	phthalic acid, diethyl ester	OV-1
1575	aniline, N-phenyl	OV-1
1588	acetic acid, methyl ester, 2, 4-dichlorophenoxy (2, 4-D	
	methyl ester)	OV-1
1588	hydrazine, 1, 2-diphenyl	OV-1
1589	phenol, 3, 4, 5-trichloro	OV-1
1610	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a beyabydro 4, 7 methano 1H, (ablandano)	OV 1
1614	phosphoric acid tributyl ester	OV-1
1645	cyclobevane alpha-bevachloro (alpha-BHC)	OV-1
1645	cyclohevane, appla-hevachloro (BUC)	OV-1
1652	ether 4-bromonbenyl phenyl	OV-1
1660	toluidine alpha alpha alpha_trifluoro_2 6_dinitro_N	0,1-1
1000	N-dinronyl-n- (trifluralin)	OV-1
1672	cyclohexane beta-bexachloro (beta-BHC)	OV-1
1680	henzene hexachloro (HCB)	OV-1
1689	anisole pentachloro	OV-1
1699	triazine-2. 4-diamine. 2-chloro-N-ethyl-N'-(1-methylethyl)-1	0,11
1077	3. 5- (atrazine)	OV-1
1704	cyclohexane, gamma-hexachloro (gamma-BHC, lindane)	OV-1
1709	pentadecane, 2, 6, 10, 14-tetramethyl (pristane)	OV-1
1713	triazine-2, 4-diamine, 6-chloro-N, N'-bis (1-methylethyl)-1,	
	3, 5- (propazine)	OV-1
1715	phenol, pentachloro	OV-1
1721	benzene, n-butyl, sulphonamide	OV-1
1752	anthracene	OV-1
1766	phosphorothioic acid, OO-diethyl	
	O-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester	01/1
1771	(diazinon)	OV-1
1//1	pnenol, 2-sec-butyl-4, 6-dinitro (dinoseb)	OV-1
1810	propionanilide, 3', 4'-dichloro (propanil)	OV-1
1834	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7,	<u></u>
10/1	/a-nexanydro-4, /-methano-1H- (chlordane)	00-1
1041	ester)	OV-1
1873	indene, 1, 4, 5, 6, 7, 8, 8-heptachloro-3a, 4, 7,	
	7a-tetrahydro-4, 7-methano-1H- (heptachlor)	OV-1
1874	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7,	
	7a-hexahydro-4, 7-methano-1H- (chlordane)	OV-1
1903	urea, 3-(3, 4-dichlorophenyl)-1-methyoxy-1-methyl (linuron)	OV-1
1915	parathion oxygen analog	OV-1
1920	phosphorodithioic acid, OO-dimethyl S-1,	
1021	2-dicarbethoxyethyl ester (malathion)	OV-1
1931	Indene, 1, 2, 4, 5, 6, 7 , 8, 8-octachioro-2, 3, 3a, 4, 7 ,	01/1
1020	/a-nexanydro-4, /-methano-1H (chlordane)	07-1
1737	$\frac{1110}{70} + \frac{11}{2} + \frac{1}{2} +$	01/1
10/1	/a-nexanydro-4, /-methano-1H- (chiordane)	07-1
1941	(normalical)	01/1
1016	(paratifion)	08-1
1740	naphinalene, 1, 2, 3, 4, 10, 10-nexachioro-1, 4, 4, 5, 8, 8 herebudro avo 1, 4 and 5, 8 dimethene (11 dim)	OV 1
1989	o-nexalignio-exo-1, 4-endo-5, δ -dimethano (aldrin) indene 1 2 4 5 6 7 8 8-octachloro-2 3 3a 4 7	01-1
	7a-hexahydro-4, 7-methano-1H- (chlordane)	OV-1

Retention index	Compound name	Stationary phase
2012	indane, 1, 4, 5, 6, 7, 8, 8-heptachloro-2, 3-epoxy-3a, 4, 7, 7a-tetrahydro-4, 7-methano-1H- (heptachlor epoxide)	OV-1
2036	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)	OV-1
2042	benzidine	OV-1
2042	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)	OV-1
2061	pyrene	07-1
2063	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)	OV-1
2072	(o, p'-DDE)	OV-1
2073	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)	OV-1
2086	benzodioxathiepin 3-oxide, 6, 7, 8, 9, 10, 10-hexachloro 1, 5,5a,6,9, 9a-hexahydro-6,9-methano-2, 4, 3- (endosulfan I)OV-1
2086	norbornene-2, 3-dimethanol, 1, 4, 5, 6, 7, 7-hexachloro, cyclic sulphite, 5- (endosulphan)	OV-1
2097	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)	OV-1
2116	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a- hexahydro-4, 7-methano-1H- (chlordane)	OV-1
2139	naphthalene, 1, 2, 3, 4, 10, 10-hexachloro-6, 7-epoxy-1, 4, 4a, 5, 6, 7, 8, 8a-octahydro-exo-1, 4:5, 8-dimethano	OV 1
2146	ethane, 1, 1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)	OV-1
2146	ethane, 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1, 1-dichloro	OV-1
2163	acetic acid, iso-octyl ester, 2, 4-dichlorophenoxy (2, 4-D iso	- OV-1
2183	benzodioxathiepin 3-oxide, 6, 7, 8, 9, 10, 10-hexachloro 1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 4, 3-	0,1-1
	(endosulfan II)	OV-1
2213	ethane, 1, 1-dichloro-2, 2-bischlorophenyl (TDE)	OV-1
2232	ethane, 1, 1, 1-trichloro-2, 2-bis (chlorophenyl) (DDT)	OV-1
2234	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 72-bevabydro-4, 7-methano-1H- (chlordane)	OV-1
2249	indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a hovebydro 4, 7 methano 111 (chlordano)	OV 1
2207	netholic acid butul bongul exter	OV-1
2300	ethane, 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl)	OV-1
2410	acetic acid 4-chloro-2-methylphenoxy (MCPA)	OV-1
2410	diazenam	OV-1
2464	phosphorodithioic acid, O, O-dimethyl S-{(4-oxo-1, 2, 3-benzotriazin-3 (4H)-yl) methyll ester (azinphos-methyl)	OV-1
2504	phthalic acid. di (2-ethylhexyl) ester	OV-1
2505	phthalic acid, di (2-ethylhexyl) ester	OV-1
2505	philane acid, di (2-ethylhexyl) ester	OV-1
2506	philiane acid, di (2-etilyinexyl) ester	OV^{-1}
2300	phinane acid, dioetyl ester	00-1
2003	3-benzotriazin-3 (4H)-yl) methyl] ester (azinphos-ethyl)	OV-1
2004	O- (3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl) ester	OV-1
2657	cyclopropanecarboxylic acid, 3-(2, 2-dichlorovinyl)-2, 2-dimethyl-, (3-phenoxyphenyl) methyl ester (permethrin)	OV-1
2676	benzacridine, dimethyl	OV-1
2814	perylene	OV-1
3093	cholesterol	OV-1

- ·

	<u> </u>								
LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
acenaphthy	ylene								
cas no.	208-96-8								
1412	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acetic acid	, 4-chloro-	2-methylphen	oxy (MCPA)				-		
cas no.	94-74-6								
2410	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acetic acid	, butyl este	er, 2,4-dichlo	rophenoxy (2,4	I-D butyl ester)					
cas no. 9	94-80-4		_						
1841	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acetic acid	, iso-octyl	ester, 2,4-dic	hlorophenoxy	(2,4-D iso-octyl	ester)				
cas no. 1	25168-26-7	OV 1		1. 1 1 1		-0			•••
2103	SAC mothul or	UV-I stor 24 diabi	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acetic aciu	, metnyi es	ster, 2,4-dichi	oropnenoxy (2	,4-D methyl este	r)				
1588	SAC	OV 1	quartz alace	handed phase	0.22	50	hridan	standard	20
aniline 23	S-dichloro	0.1-1	quartz glass	bolided pliase	0.52	50	nyurogen	standaru	20
cas no. (508-27-5								
1306	SAC	OV-1	quartz glass	honded phase	0.32	50	hydrogen	standard	28
aniline, 2.4	4-dichloro		quarte Brass	oonada phase	0.52	50	nyurogen	standard	20
cas no.	554-00-7								
1287	SAC	OV-1	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
aniline, 2,5	5-dichloro			· · · · · · · · · · ·		20			
cas no.	95-82-9								
1288	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2,6	5-dichloro			•			,		
cas no.	508-31-1								
1204	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2,6	5-dimethyl								
cas no.	87-62-7								
1130	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2-c	chloro								
cas no.	95-51-2		_		-				
1094	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2-c	chloro-4-m	ethyl							
cas no. (515-65-6	01/1							
1195	SAC	0V-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1200 anilina 27	SAC	07-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
amme, 5,4									
1377	SAC	OV-1	auartz alass	bonded phase	0.32	50	hydrogen	standard	28
aniline 34	S-dichloro	01-1	quarte glass	bolided pliase	0.52	50	nyurogen	standaru	20
cas no. (526-43-7								
1352	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline. 3-0	chloro		quarte Brass	oonada phase	0.52	50	nyurogen	standard	20
cas no.	108-42-9								
1158	SAC	OV-1	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
aniline, 4-o	chloro		. 0	ľ			, 8		
cas no.	106-47-8								
1161	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 4-c	hloro-2-ni	tro							
cas no.	89-63-4								
1538	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, N-	phenyl						-		
cas no.	122-39-4								
1575	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
anisole, 2,	3,4-trichlor	0							
cas no.	54135-80-7				_				
1465	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

Table 5 Linear Temperature Programmed Retention Indices Full Version in Alphabetical Order of Compound Name—Methyl Silicone Columns

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
anisole, 2,3 cas no. 6	3,5,6-tetrac 5936-40-9	hloro		- <u>·</u>					
1494 anisole, 2,3	SAC 3,6-trichlor	OV-1 o	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1 1341	50375-10-5 SAC 1.5-trichlor	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 6 1494	5130-75-2 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
anisole, 2,4 cas no. 8	4,6-trichlor 37-40-1	0							
anisole, pe	SAC ntachloro	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1689 anthracene	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1752	120-12-7 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 2	1e, dimethy 2381-40-0	V-1	quartz alass	bonded phase	0.32	50	budnagan	standard	20
benzene cas no. '	71-43-2	00-1	qualiz glass	bollueu phase	0.52	30	nydrogen	standard	28
0669 benzene, 1	SAC ,2,4,5-tetra	OV-1 achloro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 9 1301 benzene, 1	95-94-3 SAC .2.4-trichlo	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1150	120-82-1 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 9 1007	,2-dichloro 95-50-1 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1 cas no. 2	,3-dichloro 541-73-1			,				Standard	20
0981 benzene, 1 cas no.	SAC ,4-dichloro 106-46-7	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
0985 benzene, 1	SAC -chloro-2,4	OV-1 -dinitro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1490 benzene. 1	121-86-8 SAC -chloro-2-n	OV-1 itro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 8 1199	89-21-4 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 8	-chloro-3-n 38-73-3 SAC	OV-1	anartz glass	honded phase	0 32	50	hydrogen	standard	20
benzene, 1 cas no.	-chloro-4-n 121-73-3	itro	quarte Bluss	bonded phase	0.52	50	nyurogen	stanuaru	20
1193 benzene, 2	SAC ,3-dichloro	OV-1 nitro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1344 benzene, 2	SAC ,4-dichloro	OV-1 nitro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. (1322 benzene, 2	511-06-3 SAC ,5-dichloro	OV-1 nitro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 8 1315	89-61-2 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
benzene, 3	,4-dichlorc 99-54-7	onitro							
1339	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
henzene, 3	.5-dichloro	nitro	Jun - 8	F					
cas no.	618-62-2								
1288	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, c	hloro								
cas no.	108-90-7								
0827	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, e	thyl								
cas no.	100-41-4								
0846	SAC	OV-1	quartz glass	bonded phase	0.32	50 .	hydrogen	standard	28
benzene, h	nexachloro	(HCB)							
cas no.	118-74-1					-			
1202	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1680	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, r	1-butyl, sul	phonamide							
cas no.	3622-84-2	01/1		handed school	0.22	50	hudrogen	standard	28
1721	SAC	01-1	quartz glass	bonded phase	0.52	50	nyurogen	stanuaru	20
benzene, r	111TO								
$\cos no.$	98-95-3	OV 1	quartz alass	bonded phase	0.32	50	hydrogen	standard	28
1040 hommidino	SAC	0.1	quartz glass	bonded phase	0.52	50	nyurogen	Standard	20
Denziume	02 87 5								
cas 110.	54C	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzodiov	athienin 3.	oxide 678	9 10 10-hexachi	loro 1.5.5a.6.9.9	a-hexah	vdro-6.9	9-methano-2	.4.3- (endosu	lfan I)
cas no	959-98-8	o	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1010 1,0,000,00,0,0,0		., u re e,		,,,_ (,
2056	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzodiox	athiepin 3-	oxide. 6.7.8.	9.10.10-hexach	loro 1,5,5a,6,9,9	a-hexah	ydro-6,	9-methano-2	,4,3- (endosu	lfan II)
cas no.	33213-65-9)	- , ,						
2183	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzonitri	le, 2,6-dicl	nloro (dichlol	benil)						
cas no.	1194-65-6								
1290	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
biphenyl									
cas no.	92-52-4					••			
1348	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
borneol, 2	2-methyliso	•							
cas no.	2371-42-8	011.1		1	0.22	50	herdno oon	standard	28
1164	SAC	00-1	quartz glass	bonded phase	0.32	50	nyarogen	stanuaru	20
butadiene	, hexacloro)							
cas no.	87-68-3	OV 1	aventa alaca	handed phase	0.32	50	hydrogen	standard	28
1202	SAC	09-1	quartz glass	bonueu phase	0.52	50	nyurogen	standard	20
butane, I	-1000								
cas no.	542-09-0	OV 1	auartz alass	bonded phase	0.32	50	hvdrogen	standard	28
0/9/	5AC	0.1	qualiz glass	bonded phase	0.52	50	nyarogen	5turraur a	
outanoi,	71_36_3								
0661	SAC	OV-1	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
cholester	ol Si lo	0,1,1	-1 8	r					
cas no.	57-88-5								
3093	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cvclohexa	ne. alpha-l	hexachloro (a	lpha-BHC)	•					
cas no.	319-84-6		. ,						
1645	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cyclohexa	ine, beta-h	exacloro (bet	a-BHC)	-			-		
cas no.	319-85-7		-						
1672	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cyclohexa	ane, gamma	a-hexachloro	(gamma-BHC,	lindane)					
cas no.	58-89-9								
1704	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column	Туре	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
cyclohexan cas no.	e, hexachlo 608-73-1	oro (BHC)								
1645	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hvdrogen	standard	28
cvclopenta	diene, hexa	achloro	4 8		F 11002 C			,	51000	
cas no.	77-47-4									
1318	SAC	OV-1	quartz plass	bonded	nhase	0.32	50	hydrogen	standard	28
cyclopropa	inecarboxy	lic acid $3-(2)$	2-dichlorovinvl	$)_2 2_dim$	ethyl-	(3-nhen	ovvnher	vl)methyl es	ter (permeth	rin)
cyclopropa	52645-53-1		,2-010110101111	<i>J-2</i> ,2-um	cuiryi-,	(J-phen	oxypher	iyi)inctiiyi cs	ter (permerm	
2657	SAC	OV-1	quartz alace	bonded	nhace	0 32	50	hydrogen	ctandard	28
decalol tr	$n_{n_{1}} = 10$	ov-i methyl-trans	quartz glass	Donaca	phase	0.52	50	nyurogen	Stanuaru	20
	10700 01 1	incuryi-u ans.	-9- (geosiiiii)		-					
120A	19/00-21-1 SAC	OV 1	anarta alaas	handad	nhaca	0.22	50	hudro con	atondard	20
1504	oid mother	l anton	qualitz glass	Donaea	phase	0.52	50	nyurogen	standard	20
decanoic a		i ester								
cas no.	110-42-9	01/1		1		0.20	50	1 1		20
	SAC	00-1	quartz glass	bonded	pnase	0.32	50	hydrogen	standard	28
diazepam										
cas no.	52357-79-6									
2419	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hydrogen	standard	28
dicyclohex	ylamine									
cas no.	101-83-7									
1400	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hydrogen	standard	28
dioxane, 1	,4-									
cas no.	123-91-1									
0692	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hydrogen	standard	28
disulphide	, ethylmeth	nyl			-					
cas no.	2033-39-5	-								
0869	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hvdrogen	standard	28
dodecanoi	c acid, met	thyl ester	1 0 0		r			,0		
cas no	111-82-0	,								
1507	SAC	OV-1	quartz place	bonded	nhase	0.32	50	hydrogen	standard	28
ethane 1	1 1-trichlor	$-2.2 - \frac{1}{2} - \frac{1}{2}$	hlorophenvl) (r		')	0.52	50	nyarogen	Standard	20
centanc, 1,	50_20_3	0 2,2 015(+0	morophenyi) (p	,p -DD1	,					
2300	SAC	OV_1	quartz dace	bonded	nhace	0 32	50	hydrogen	standard	28
ethane 1	1 L trichlor	c_{2}^{-2} 2-bis(ch)	oronhenvl) (DI		phase	0.52	50	nyarogen	Standard	20
ethane, I,	50 20 2	0-2,2-015(CIII								
	50-29-5	OV 1	auarta alaas	handad	mhasa	0.22	50	hudrogen	standard	20
ZZJZ	SAC	UV-I	quartz glass	Donaea	phase	0.52	50	nyurogen	standard	20
etnane, I,	1, 2, 2 - ieirac	noro								
cas no.	/9-34-3	01/1		1	1	0.00	c 0	1 1		00
08/6	SAC		quartz glass	bonaea	pnase	0.32	50	nyarogen	standard	28
ethane, I,	I-dichloro-	2,2-bischiord	phenyl (TDE)	-						
cas no.	72-54-8	01/1			• -	0.00	50			•
2213	SAC	0 v - 1	quartz glass	bonded	pnase	0.32	20	nyarogen	standard	28
etnane, I,	1-dichloro-	2-(2-chiorop	nenyi)-2-(4-chio	ropnenyi) (o,p'-	IDE)				
cas no.	53-19-0	011 1					- 0			•
2146	SAC	00-1	quartz glass	bonded	phase	0.32	50	hydrogen	standard	28
ethane, 2-	(2-chloroph	nenyl)-2-(4-cl	lorophenyl)-1,	l-dichloro) (2,4'1	(סטנ				
cas no.	53-19-0									
2146	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hydrogen	standard	28
ethane, he	exachloro									
cas no.	67-72-1									
1055	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hydrogen	standard	28
ethane, 1,	1-dichloro	-2-(2-chlorop	henyl)-2-(4-chlo	orophenyl) (o,p'·	DDE)				
cas no.	3424-82-6		- / 、			•				
2072	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hvdrogen	standard	28
ether. 4-h	romopheny	vl phenvl	1 ···· - 0-····0							
cas no	101-55-3	· · ·····								
1652	SAC	OV-1	quartz glass	bonded	phase	0.32	50	hydrogen	standard	28
hentanon	e. 5-methvl	-3-	-1 9-400		r			, ~ 800 11		
cas no	541-85-5	-								
0923	SAC	OV-1	quartz glass	bonded	l phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
hepten-2-c	one, 6-meth	ıyl-5-							
cas no.	110-93-0	OV 1		h J . J h	0.22	50	1	at a web web	20
0962	SAC	-1-40	quartz glass	bonded phase	0.32	50	nyarogen	standard	20
nexanoic a	140.57.5	/1							
cas no.	149-5/-5	OV 1		1	0.22	50	herdan ana	standard	20
1111/	SAC 1.2 dimber	07-1	quartz glass	bonded phase	0.32	50	nyarogen	standard	20
nydrazine,	1,2-aipne	nyi							
cas no.	122-00-/	OV 1	avente close	handed share	0.22	50	hudrogen	standard	20
1000	SAC	UV-I - h-ud-ai-d-m	quartz glass	bonded phase	0.52	50	nyurogen	stanuaru	20
nyarindan	404 104	anyuromuan	e)						
cas no.	490-10-0 SAC	OV 1	auartz alass	handed phase	0.32	50	hydrogen	standard	28
indone 1	5AC 156788	hentachloro	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	7 7a-tetrahydro	0.52 _1 7_met	JU hano-11	Hydrogen H- (hentachl	or enovide)	20
muane, 1,	4,5,0,7,0,0 1024-57-3	-neptaemoro	-2,5-epoxy-5a,4	, /, /a-tetraliyur)-4,/-IIICl	114110-11	.1- (neptaem	or epoxide)	
2012	SAC	OV.1	quartz dass	handed phase	0.32	50	hydrogen	standard	28
indepe 1	3AC 215678	8-octachloro	-23394772	bevahvdro-4 7-n	0.52 nethano-	1H_ (ch	lordane)	standard	20
muche, 1,	2,4,5,0,7,0 57.71.0	,0-octacinore	-2,5,5a, 4 ,7,7a-	nexanyur 0-4, / -n	actilanto-	[]]- (ch	ioruane)		
1610	SAC	OV-1	auartz alass	bonded phase	0.32	50	hydrogen	standard	28
1834	SAC	OV-1	quartz dass	bonded phase	0.32	50	hydrogen	standard	28
1974	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1074	SAC	OV-1 OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1020	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1939	SAC	OV-1	quartz dass	bonded phase	0.32	50	hydrogen	standard	28
2026	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2030	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2042	SAC	OV = 1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2005	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2073	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2037	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2110	SAC	OV 1	quartz glass	bonded phase	0.32	50	hydrogen	standard	20
2234	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2249	156788	hentachloro	-3a 1 7 7a_tetra	hydro 4.7-meth	0.52	JU (hentac	hlor)	Standard	20
muene, I,	76 11 9	-neptaemoro	-Ja,4,7,7a-iciia	inyuro-4,7-incura	ano-111-	(incprac			
1973	SAC	OV-1	auartz alass	honded phase	0.32	50	hydrogen	standard	28
methane	bis (methy	lthia)	quarte glass	bonded phase	0.52	50	nyurogen	Standard	20
memane,	1618-26-A	nino)							
0860	SAC	OV_{-1}	quartz alass	bonded phase	0.32	50	hydrogen	standard	28
methane	dibromoch		quartz glass	bollaca pliase	0.52	50	nyurogen	Junuara	-0
cas no	124_48_1	lioro							
0768	SAC	OV-1	auartz alass	bonded phase	0.32	50	hydrogen	standard	28
methane	tribromo	011	quartz glass	bollued pliuse	. 0.51	20	nyarogon	Stundard	
cas no	75_25_2								
0852	SAC	OV-1	auartz alass	bonded phase	0.32	50	hydrogen	standard	28
nanhthale	ne	0,1-1	quarte Blass	contaca phase	0.52	50	nyarogon	Standard	
cas no	91_20_3								
1155	SAC	OV-1	auartz alass	bonded phase	0.32	50	hydrogen	standard	28
1155	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
nanhthale	ene. 1.2.3.4	4.10.10-hexac	hloro-1.4.4.5.8	.8-hexahvdro-ex	o-1.4-en	do-5.8-d	limethano (a	uldrin)	
cas no.	309-00-2	.,		, ••				,	
1946	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
nanhthale	ne 1234	10 10-hexac	hloro-6.7-epoxy	v-1.4.4a.5.6.7.8	8a-octah	vdro-ex	0-1.4:5.8-dir	nethano (diel	drin)
cas no	60-57-1	,10,10 110/110	more of openi	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ou oolun	, ui e en	,,		,
2139	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
nanhthala	ne. 1-chlor	0	Junin Brand	connor hunde	0.04	50	ui 05011		-0
cae no	90_13_1								
1348	SAC	OV-1	auartz olass	bonded phase	0.32	50	hydrogen	standard	28
nanhthala	ne. 2-chlor	ro Contra	JAMIN BIOD	contra philot		20			
cas no	91-58-7								
1348	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
norbornen	e-2,3-dimet	hanol, 1,4,5,	6,7,7-hexachlo	ro, cyclic sulphit	e, 5- (er	ndosulp	han)		
2086 octanol, 1	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1056	111-87-5 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
pentadecan cas no.	ne, 2,6,10,1 1921-70-6	14-tetramethy	l (pristane)	•					
1709 pentanol,	SAC 2-methyl-2-	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no.	590-36-3								
0723 pentanone	SAC , 2-	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no.	107-87-9		_						
0674	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
perylene	100 66 0								
cas no.	198-33-0	01/1		- 1	0.00	60	1 1		00
2814	SAC	07-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenoi	108 05 2								
Cas 110.	SAC	OV-1	quartz alass	bonded phase	0 32	50	hydrogen	standard	20
nhenol 2	3 4_trichlor	00-1	quartz glass	bollucu pliase	0.52	50	nyurogen	stanuaru	20
	15950-66-0								
1332	SAC	OV-1	quartz glass	honded phase	0 32	50	hydrogen	standard	28
phenol. 2.	3.5-trichlor	ro	quarte Brass	oonava phase	0.52	50	nyarogon	Standard	20
cas no.	933-78-8								
1304	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	3,6-trichlor	ro	1 0	· · · · · · · · · · · · · · · · · · ·			,		
cas no.	933-75-5								
1346	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	4,5-trichlo	ro		-					
cas no.	95-95-4			-					
1327	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	4-dichloro			-					
cas no.	120-83-2								
1140	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	,4-dimethyl	(m-xylenol)							
cas no.	105-67-9			-					
1123	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	4-dinitro								
cas no.	51-28-5	o							
1435	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	,5-dimethyl	(2,5-xylenol)							
cas no.	95-87-4	OV 1			0.00				•••
1125 whenel 2	SAC 6 dim athrul	00-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
pnenoi, 2,	, o-almetnyi								
cas no.	5/0-20-1	OV 1		 1	0.00	~0			
10/9	SAC		quartz glass	bonded phase	0.32	50	hydrogen	standard	28
prienor, 2	-ammo-4-cr	noro							
cas 110.	93-63-2 SAC	OV 1	ananta dalar	1	0.00	60			•••
1415 nhanol 1	sAC	07-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
	05 57 8								
Cas 110.	55-57-6 SAC	OV 1	anorta alosa	handed where	0.22	50	1		00
nhenol	sec_hutul A	6-dinitra (di	quartz glass	oonded phase	0.32	50	nyarogen	standard	28
priction, Z	-300-04191-4 88_85_7	,o-unitio (ai	1103007						
1771	SAC	OV-1	auartz alaca	handed phase	0 22	50	hudnosor	atondand	20
nhenol 2	4 5_trichlo	TO TO	quarte glass	oonucu phase	0.54	20	nyurogen	standard	28
priction, 5	,,,101101 600_10_2								
1580	SAC	OV-1	auartz alace	handed phase	0 32	50	hydrogen	etandard	20
1505	~	0,-1	Yuurez Blass	oonaca phase	0.54	50	nyurogen	stanualu	20

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
phenol, 3,	4-dimethyl	(3,4-xylenol)							
cas no.	95-65-8	01/1		handed mbeen	0.22	50	hudro con	standard	20
1167	SAC	00-1	quartz glass	bonded phase	0.32	50	nyarogen	stanuaru	20
pnenol, 3-	chioro								
cas no.	108-43-0	01/1		handed where	0.22	50	herden and	ston doud	20
11/3	SAC	00-1	quartz glass	bonded phase	0.52	30	nyurogen	stanuaru	20
pnenol, 4-									
cas no.	SAC	OV 1	quartz alass	honded phase	0.32	50	hydrogen	standard	28
nhenol /	chloro 3 m	ethyl	qualitz glass	bolided pliase	0.52	50	nyurogen	Standard	20
	50_50_7	Cullyr							
1260	SAC	OV-1	auartz alass	honded phase	0.32	50	hydrogen	standard	28
nhenol ne	entachloro	011	quuitz glubb	bollaca pliase	0.52	20	nyurogen	Standard	20
phenoi, p	87_86_5								
1715	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
nhosphori	c acid. trib	utvl ester	quarte Blass	oonada phase				500000000	
cas no.	126-73-8								
1614	SAC	OV-1	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
nhosphore	dithioic ac	id. 0.0-diet	$\frac{1}{100} = \frac{1}{100}$.2.3-benzotriazin	-3(4H)-v	v1)meth	vl] ester (azi	nphos-ethyl)	
cas no.	2642-71-9	,		,		-)	/	FJ -)	
2553	SAC	OV-1	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
nhosphore	dithioic ac	id. O.O-dim	ethyl S-I(4-oxo	-1.2.3-benzotriaz	in-3 (4H	[)-v1)me	ethvl] ester (azinphos-meth	ıvl)
cas no.	86-50-0	,		_,,		-, , -,			.,
2464	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phosphore	dithioic ac	id, OO-dime	thyl S-1,2-dica	rbethoxylethyl es	ster (mal	athion)			
cas no.	121-75-5	,	,		•	,			
1920	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phosphore	othioic acid	l. O.O-diethy	l O-(3-chloro-4	4-methyl-2-oxo-2	H-1-ben	zopyran	-7-y1) ester	(coumaphos)	
cas no.	56-72-4		•	•			•		
2654	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phosphore	othioic acid	l, OO-diethyl	O-4-nitrophen	yl ester (parathi	on)				
cas no.	56-38-2		-		-				
1941	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phosphore	othioic acid	l, OO-diethyl	O-[6-methyl-2	e-(1-methylethyl)	-4-pyrim	idinyl]	ester (diazino	on)	
cas no.	333-41-5								
1766	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phthalic a	cid, butyl	benzyl ester							
cas no.	85-68-7								
2287	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phthalic a	cid, di(2-et	thylhexyl) est	er						
cas no.	117-81-7								
2504	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2505	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2506	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phthalic a	cid, diethy	l ester							
cas no.	84-66-2		_						
1548	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phthalic a	cid, diocty	l ester							
cas no.	117-81-7		_			- •			• •
2506	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
picoline,	beta (3-met	hylpyridine)							
cas no.	108-99-6	.	_						•••
0832	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
picoline,	gamma (4-1	methylpyridii	ne)						
cas no.	108-89-4	o			0.00	= 0			
0832	SAC	07-1	quartz glass	bonded phase	0.32	50	nydrogen	standard	28
propane,	1-nitro								
cas no.	108-03-2	OV 1		hand-1 -1	0.00	50	h		-
0707	SAC	07-1	quartz glass	bonded phase	0.52	20	nyarogen	standard	28

.

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
propionan cas no.	ilide, 3',4' 709-98-8	-dichloro (pr	opanil)						_
1816 pyrazine, 2	SAC 2-isobutyl-3	OV-1 -methoxy	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1160 pyrzine, 2	SAC -isopropyl-3	, OV-1 3-methoxy	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1076 pyrene	25773-40-4 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 2061 pyridine	129-00-0 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 0732 thianaphtl	110-86-1 SAC nene	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1161 toluene, 2	95-15-8 SAC .4-dinitro	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1468 toluene, 2	121-14-2 SAC .6-dinitro	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1392 toluene, 2	606-20-2 SAC -chloro	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 0931 toluene, 2	95-49-8 SAC -chloro-4-n	OV-1 itro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1316 toluene, 3	121-86-8 SAC -chloro	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 0932 toluene, 4	108-41-8 SAC -chloro	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 0936 toluene, 4	106-43-4 SAC -chloro-2-n	OV-1 itro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1268 tolunen, 4	89-59-8 SAC I-chloro-3-n	OV-1 iitro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1312 toluene, 6	89-60-1 SAC -chloro-2-n	OV-1 itro	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1259 toluene, a	83-42-1 SAC lipha,alpha	OV-1 -dichloro (be	quartz glass nzal chloride)	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1106 toluene, a	98-87-3 SAC alpha-chloro	OV-1 o (benzyl chl	quartz glass oride)	bonded phase	0.32	50	hydrogen	standard	28
cas no. 0983 toluidine,	100-44-7 SAC 2-chloro-p	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1252 toluidine.	615-65-6 SAC 3-chloro-o	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1182 toluidine,	87-60-5 SAC 4-chloro-o	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cas no. 1256	95-69-2 SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
toluidine,	5-chloro-o-								
cas no.	95-79-4								-
1256	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluidine,	6-chloro-m								
cas no.	95-81-8								
1201	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluidine,	6-chloro-o-	-							
cas no.	87-63-8								
1249	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluidine,	alpha,alpha	a,alpha-triflu	oro-2,6-dinitro	-N,N-dipropyl-p-	(triflur	alin)			
cas no.	1582-09-8								
1660	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
triazine, 2	,4,6-trichlo	ro-1,3,5- (cya	nuric chloride))					
cas no.	108-77-0								
1051	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
triazine-2,	4-diamine,	2-chloro-N-e	thyl-N′-(1-metl	hylethyl)-1,3,5- (a	atrazine)			
cas no.	1912-24-9								
1699	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
trizine-2,4	-diamine, 6	6-chloro-N,N	-bis(1-methyle	thyl)-1,3,5- (prop	oazine)				
cas no.	139-40-2	-	•						
1713	SAC	OV-1	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
undecanoi	c acid, met	thvl ester	1 0	•					
cas no.	111-81-9								
1408	SAC	OV-1	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
urea 3-(3	4-dichloro	nhenvl)-1-met	hvoxy-1-methy	d (linuron)	•				
cae no	330-55-2	p		- \					
1002	SAC	OV-1	auartz olass	bonded phase	0.32	50	hydrogen	standard	28
1903	JAC	01-1	Yuurte Buss	contaca phase	5.52	20			

Table 6 Linear Temperature Programmed Retention Indices Truncated Version in Retention Index Order—Polyethylene Glycol Columns

Retention index	Compound name	Stationary phase
1000	methane, trichloro	Superox 0.6
1012	ethene, tetrachloro	Superox 0.6
1026	propane, 1,2-dichloro	Superox 0.6
1027	benzene, methyl, (toluene)	Superox 0.6
1028	ethene, trichloro	Superox 0.6
1045	ethane, 1,2-dichloro	Superox 0.6
1066	propene, 2,3-dichloro	Superox 0.6
1110	benzene, ethyl	Superox 0.6
1112	propene, trans-1,3-dichloro	Superox 0.6
1132	methane, bromodichloro	Superox 0.6
1158	ether, 2,2-dichloroethyl methyl	Superox 0.6
1169	propane, 1-chloro-2,3-epoxy (epichlorohydrin)	Superox 0.6
1172	heptanone, 5-methyl-2-	Superox 0.6
1180	benzene, 1,2-dimethyl, (o-xylene)	Carbowax 20M
1180	picoline, alpha (2-methylpyridine)	Superox 0.6
1183	propene, cis-1,3-dichloro	Superox 0.6
1188	benzene, chloro	Superox 0.6
1190	benzene, 1,2-dimethyl, (o-xylene)	Carbowax 20M
1205	benzene, chloro	Carbowax 20M
1226	ethane, 1,2-dibromo	Superox 0.6
1236	ethane, 1,1,2-trichloro	Superox 0.6
1252	picoline, beta (3-methylpyridine)	Superox 0.6
1256	methane, bis-(methylthio)	Superox 0.6
1257	picoline, gamma (4-methylpyridine)	Superox 0.6

Retention index	Compound name	Stationary phase
1267	methane, dibromochloro	Superox 0.6
1276	formamide, N, N-dimethyl	Superox 0.6
1277	toluene, 2-chloro	Superox 0.6
1288	toluene, 3-chloro	Superox 0.6
1291	toluene, 2-chloro	Carbowax 20M
1291	toluene, 4-chloro	Superox 0.6
1301	toluene, 3-chloro	Carbowax 20M
1304	toluene, 4-chloro	Carbowax 20M
1314	hepten-2-one, 6-methyl-5-	Superox 0.6
1329	ethanol, 2-chloro	Superox 0.6
1330	anisole	Carbowax 20M
1341	anisole	Carbowax 20M
1357	ethanol, 2-chloro	Carbowax 20M
1384	benzene, 1,3-dichloro	Superox 0.6
1400	ethane, hexachloro	Superox 0.6
1407	methane, tribromo	Superox 0.6
1410	pyrazine, 2-isopropyl-3-methoxy	Superox 0.6
1411	benzene, 1,4-dichloro	Superox 0.6
1446	furfuraldehyde	Carbowax 20M
1452	benzene, 1,2-dichloro	Superox 0.6
1457	furfuraldehyde	Carbowax 20M
1475	ethane, 1,1,2,2-tetrachloro	Superox 0.6
1478	toluene, alpha-chloro (benzyl chloride)	Superox 0.6
1480	butadiene, hexachloro	Superox 0.6
1481	propanoic acid (propionic acid)	Superox 0.6
1497	toluene, alpha-chloro (benzyl chloride)	Carbowax 20M
1514	propanoic acid, 2-methyl	Superox 0.6
1528	phosphonium, (3,4-dichlorobenzyl) triphenyl, chloride	Superox 0.6
1552	ethane 1.2-dihydroxy (ethylene glygol)	Superox 0.6
1562	horneol 2-methyliso	Superox 0.6
1603	benzene 1 2.4-trichloro	Superox 0.6
1664	pentadecane, 2.6.10.14-tetramethyl (pristane)	Carbowax 20M
1672	toluene, alpha.alpha-dichloro (benzal chloride)	Superox 0.6
1675	pentadecane, 2.6.10.14-tetramethyl (pristane)	Carbowax 20M
1683	benzene, nitro	Superox 0.6
1690	naphthalene	Superox 0.6
1690	toluene, alpha, alpha-dichloro (benzal chloride)	Carbowax 20M
1709	naphthalene	Carbowax 20M
1720	naphthalene	Carbowax 20M
1749	benzene, 1-methyl-2-iodo	Superox 0.6
1750	benzene 1,2,4,5-tetrachloro	Superox 0.6
1750	phenol, 2-nitro	Superox 0.6
1751	thianaphthene	Superox 0.6
1768	anisole, 2,4,6-trichloro	Superox 0.6
1788	phenol, 2-chloro	Superox 0.6
1789	decalol, trans-1,10-dimethyl-trans-9- (geosmin)	Superox 0.6
1815	phenol, 2-chloro	Carbowax 20M
1847	benzene, 1-chloro-3-nitro	Superox 0.6
1862	benzene, 1-chloro-3-nitro	Carbowax 20M
1879	aniline, 2-chloro	Superox 0.6
1887	anisole, 2,3,6-trichloro	Superox 0.6
1887	benzene, 1-chloro-4-nitro	Superox 0.6
1887	benzene, 3,5-dichloronitro	Superox 0.6
1893	toluidine, 3-chloro-o-	Superox 0.6
1896	toluene, 6-chloro-2-nitro	Superox 0.6
1901	aniline, 2-chloro	Carbowax 20M
1901	toluene, 4-chloro-2-nitro	Superox 0.6
1902	benzene, 1-chloro-4-nitro	Carbowax 20M
1905	aniline, 2,6-dichloro	Superox 0.6

•

Retention index	Compound name	Stationary phase
 1909	ionone, beta-	Carbowax 20M
1915	toluene, 4-chloro-2-nitro	Carbowax 20M
1922	ionone, beta-	Carbowax 20M
1932	phenol	Superox 0.6
1936	biphenyl	Superox 0.6
1946	benzene, 1-chloro-2-nitro	Superox 0.6
1948	biphenyl	Carbowax 20M
1957	toluidine, 3-chloro-p-	Superox 0.6
1961	phenol	Carbowax 20M
1962	naphthalene, 1-chloro	Superox 0.6
1964	benzene, 1-chloro-2-nitro	Carbowax 20M
1965	toluene, 2-chloro-4-nitro	Superox 0.6
1973	naphthalene, 2-chloro	Carbowax 20M
1975	toluidine, 6-chloro-m-	Superox 0.6
1977	aniline, 2-chloro-4-methyl	Carbowax 20M
2010	phenol, 2,5-dimethyl (2,5-xylenol)	Superox 0.6
2014	methenamine	Superox 0.6
2014	phenol, 2,4-dimethyl (m-xylenol)	Superox 0.6
2031	anisole, 2,3,5,6-tetrachloro	Superox 0.6
2039	toluene, 4-chloro-3-nitro	Superox 0.6
2040	benzene, 3,4-dichloronitro	Superox 0.6
2053	benzene, 2,5-dichloronitro	Superox 0.6
2064	benzene, 2,4-dichloronitro	Superox 0.6
2079	phosphoric acid, tributyl ester	Superox 0.6
2084	benzonitrile, 2,6-dichloro (dichlobenil)	Superox 0.6
2092	acenaphthene	Carbowax 20M
2093	indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-	
	hexahydro-4,7-methano-1H (chlordane)	Carbowax 20M
2098	phenol, 2,4-dichloro	Superox 0.6
2100	aniline, 4-chloro	Superox 0.6
2103	acenaphthene	Carbowax 20M
2110	aniline, 3-chloro	Superox 0.6
2123	acenaphthylene	Superox 0.6
2127	toluidine, 6-chloro-o-	Superox 0.6
2130	aniline, 4-chloro	Carbowax 20M
2137	benzene, 2,3-dichloronitro	Superox 0.6
2140	aniline, 3-chloro	Carbowax 20M
2144	phenol, 3,4-dimethyl (3,4-xylenol)	Superox 0.6
2145	toluidine, 5-chloro-o-	Superox 0.6
2155	toluidine, 4-chloro-o-	Superox 0.6
2160	aniline, 2-chloro-4-methyl	Superox 0.6
2164	toluidine, 2-chloro-p-	Superox 0.6
2183	anisole, 2,3,4-trichloro	Superox 0.6
2193	benzene, hexachloro (HCB)	Superox 0.6
2203	aniline, 2,4-dichloro	Superox 0.6
2212	indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-	
	hexahydro-4, 7-methano-1H- (chlordane)	Carbowax 20M
2226	aniline, 2,3-dichloro	Superox 0.6
2261	aniline, 2,3-dichloro	Superox 0.6
2287	indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-	
	hexahydro-4,7-methano-1H- (chlordane)	Carbowax 20M
2299	hydrazine, 1,2-diphenyl	Superox 0.6
2322	toluene, 2,6-dinitro	Superox 0.6
2326	phenol, 2,3,6-trichloro	Superox 0.6
2333	phthalic acid, diethyl ester	Carbowax 20M
2342	phenol, 4-chloro	Superox 0.6
2345	phenol, 3-chloro	Superox 0.6
2346	phthalic acid, diethyl ester	Carbowax 20M
2376	phenol, 4-chloro	Carbowax 20M
2378	phenol, 3-chloro	Carbowax 20M

Retention index	Compound name	Stationary phase
2382	phosphorothioic acid, 00-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl]ester	Summer 0 C
0004	(diazinon)	Superox 0.6
2394	etner, 4-bromopnenyl pnenyl	Superox 0.6
2410	phenol, 4-chloro-3-methyl	Superox 0.6
2420	toluene, 2,4-dinitro	Superox 0.6
2429	indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-	
	hexahydro-4, 7-methano-1H- (chlordane)	Carbowax 20M
2438	phenol, 4-chloro-3-methyl	Carbowax 20M
2452	cyclohexane, alpha-hexachloro (alpha-BHC)	Superox 0.6
2465	acetic acid, methyl ester, 2,4-dichlorophenoxy (2,4-D methyl ester)	Superox 0.6
2469	aniline. 3.5-dichloro	Superox 0.6
2505	indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a- tetrahydro-4,7 methano-1H (heptachlor)	Superox 0.6
2510	indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-	
	hexahydro-4,7-methano-1H- (chlordane)	Carbowax 20M
2519	aniline, 3,4-dichloro	Superox 0.6
2521	aniline, N-phenyl	Superox 0.6
2526	benzene, 1-chloro-2,4-dinitro	Superox 0.6
2530	indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a- hexahydro-4,7-methano-1H- (Chlordane)	Carbowax 20M
2536	naphthalene, 1,2,3,4,10,10-hexachloro-1,4,4,5,8,8-hexa- hydro-exo-1,4-endo-5,8-dimethano (aldrin)	Superox 0.6
2537	naphthalene, 1,2,3,4,10,10-hexachloro-1,4,4,5,8,8-hexa- hydro-exo-1,4-endo-5,8-dimethano (aldrin)	Carbowax 20M
2542	indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a- hexabydro-4 7-methano-1H- (chlordane)	Carbowax 20M
25/3	nbenol 2-amino-4-chloro	Carboway 20M
2545	benzene 1 chloro 2 4 -dinitro	Carboway 20M
2545	independent 12456788 extendioro 23384778	
2590	hexahydro-4,7-methano-1H- (chlordane)	Carbowax 20M
2034	antifiacene	Superox 0.0
2641	acetic acid, butyl ester, 2,4-dichlorophenoxy (2,4-D	Sumaray 0.6
2682	triazine-2,4-diamine, 6-chloro-	Superox 0.0
2776	N,N'-bis(1-methylethyl)-1,3,5- (propazine) triazine-2,4-diamine, 2-chloro-N-ethyl-	Superox 0.6
2828	N'-(1-methylethyl)-1,3,5- (atrazine) indane, 1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-	Superox 0.6
	tetrahydro-4,7-methano-1H- (heptachlor epoxide)	Superox 0.6
2856	cyclohexane, beta-hexachloro (beta-BHC)	Superox 0.6
2872	triazine-2,4-diamine, 6-chloro-N,N' diethyl-1,3,5-(simazine)	Superox 0.6
2879	norbornene-2,3-dimethanol, 1,4,5,6,7,7-hexachloro, cyclic sulphite 5- (endosulphan)	Superox 0.6
2880	benzodioxathiepin 3-oxide, 6,7,8,9,10,10-hexachloro 1,5,5a,6,9,9a-hexahydro-6, 9-methano-2,4,3- (endosulfan I)	Superox 0.6
2904	ethene, 1, 1-dichloro-2-(2-chlorophenyl)-2-	Superov 0.6
2911	acetic acid, iso-octyl ester, 2,4-dichlorophenoxy (2,4-D	
2056	iso-octyl ester)	Superox U.6
2936	benzene, n-butyi, sulphonamide	Superox 0.6
3103	etnane, 1,1,1-trichloro-2,2-bis(4-chlorophenyl) (p,p'-DDT)	Superox 0.6
3103	naphthalene, 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a, 5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano (dieldrin)	Superox 0.6
3106	ethane, 1,1,1-trichloro-2,2-bis (chlorophenyl) (DDT)	Superox 0.6
3106	phthalic acid, di(2-ethylhexyl) ester	Superox 0.6

.

Retention index	Compound name	Stationary phase
3106	phthalic acid, dioctyl ester	Superox 0.6
3120	ethane, 1,1-dichloro-2-(2-chlorophenyl)-2-	
	(4-chlorophenyl) (0,p'-TDE)	Superox 0.6
3123	ethane, 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,	
	1-dichloro (2,4'DDD)	Superox 0.6
3197	propionanilide, 3',4'-dichloro (propanil)	Superox 0.6

Table 7 Linear Temperature Programmed Retention Indices Full Version in Alphabetical Order of Compound Name—Polyethylene Glycol Columns

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
acenaphth	ene								
cas no.	83-32-9								
2092	SAC	Carbowax 20M	quartz glass	wall-coated open tubular	0.32	50	hydrogen	standard	28
2103	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acenaphth	ylene								
cas no.	208-96-8								
2123	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acetic acid	I, butyl est	er, 2,4-dichlo	prophenoxy (2,4	4-D butyl ester)					
cas no.	94-80-4								
2641	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acetic acio	l, iso-octyl	ester, 2,4-die	chlorophenoxy	(2,4-D iso-octyl	ester)				
cas no.	25168-26-7	,							
2911	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
acetic acid	l, methyl e	ster, 2,4-dich	lorophenoxy (2	2,4-D methyl este	er)				
cas no.	1928-38-7								
2465	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2	,3-dichloro								
cas no.	608-27-5								
2261	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2	,4-dichloro								
cas no.	554-00-7								
2203	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2	,5-dichloro								
cas no.	95-28-9								
2226	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 2	.6-dichloro								
cas no.	608-31-1								
1905	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline. 2	-chloro								
cas no.	95-51-2								
1879	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1901	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
aniline, 2-	chloro-4-m	ethyl							
1977	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2160	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 3,	4-dichloro								
cas no. 2519	95-76-1 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 3,	5-dichloro			-					
cas no. 2469	626-43-7 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 3-	chloro								
cas no. 2110	108-42-9 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2140	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, 4-	chloro	20101							
cas no.	106-47-8	~				-			• •
2100	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2130	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
aniline, N cas no.	-phenyl 122-39-4	20141							
2521	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
anisole		0.6							
cas no.	100-66-3			-					
1330	SAC	Carbowax 20M	quartz glass	wall-coated open tubular	0.32	50	hydrogen	standard	28
1341	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
anisole, 2	,3,4-trichlo	ro							
cas no. 2183	54135-80-7 SAC	Superox	auartz alass	bonded phase	0 32	50	hydrogen	standard	28
2105	SAC	0.6	qualtz glass	bonaca phase	0.52	50	nyurogen	stanuaru	20
anisole, 2	,3,5,6-tetra	chloro							
cas no. 2031	6936-40-9 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
anisole 2	3 6-trichlo	0.6 Iro							
cas no.	50375-10-5	5							
1887	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
anisole, 2	,4,6-trichlo	ro							
cas no.	87-40-1	Sumanan		h d d h	0.20	50	1		•••
1708	SAC	0.6	quartz glass	bondend phase	0.32	50	hydrogen	standard	28
anthracen	e 100 10 7								
cas no. 263/	120-12-7 SAC	Superov	allartz alaco	bonded phase	0 22	50	hudrogen	atondard	20
2034	JAC	0.6	quarte glass	oonaca phase	0.52	50	nyurogen	standard	28
benzene,	1,2,4,5-tetr	achloro							
cas no.	95-94-3	Suparar	auarte alaa-	handad h	0.22	£0	hund	اامەم	•••
1/30	SAC	0.6	quartz glass	bonded phase	0.32	50	nyarogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
benzene,	1,2,4-trichle	oro							
1603	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	1,2-dichloro	o							
cas no. 1452	95-50-1 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	1,2-dimethy	yl (o-xylene)							
cas no. 1180	95-47-6 SAC	Carbowax	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
1190	SAC	Carbowax	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	,3-dichloro	20101							
cas no. 1384	541-73-1 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	,4-dichloro	0.6 D							
cas no. 1411	106-46-7 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	-chloro-2.4	0.0 4-dinitro					-		
cas no.	121-86-8								
2526	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2545	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	-chloro-2-	nitro							
cas no. 1946	89-21-4 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1964	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	l-chloro-3-	nitro							
1847	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1862	SAC	Carbowax	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene.	l-chloro-4-	nitro							
cas no.	121-73-3								
1887	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1902	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 1	l-methyl-2-	iodo							
cas no.	615-37-2	a							
1749	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 2	2,3-dichlor(3200_22_1	onitro							
2137	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 2	2,4-dichloro	onitro							
cas no.	611-06-3								
2064	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
benzene, 2 cas no.	,5-dichloro 89-61-2	nitro							
2053	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 3	,4-dichloro 99-54-7	onitro							
2040	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, 3	,5-dichloro	onitro		_					
1887	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, c	hloro								
cas no. 1188	108-90-7 SAC	Superox	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
1205	SAC	0.6 Carbowax	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
henzene e	thyl	20M							
cas no.	100-41-4								
1110	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, h	exachloro	(HCB)							
2193	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, n cas no.	nethyl, (tol 108-88-3	uene)							
1027	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, n	i-butyl, sul	phonamide							
2956	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzene, n	itro								
cas no. 1683	98-95-3 SAC	Superox	auartz plass	bonded phase	0 32	50	bydrogen	standard	28
benzodiox	athienin 3.	0.6) 10 10-hevachl	loro 1 5 52 6 0 0	o.52	udro 6 () methane 2	4.2 (ondow)	20
cas no.	959-98-8	onide, 0,7,0,2	,10,10-nexaem	010 1,5,54,0,9,9	а-пелап	yur0-0,:	-methan0-2	,4,5-(endosun	all 1)
2880	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
benzonitri cas no.	le, 2,6-dich 1194-65-6	lloro (dichlob	enil)						
2084	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
biphenyl		0.0							
cas no.	92-52-4	_	_						
1936	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1948	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
borneol, 2	-methyliso			-					
1562 las	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
butadiene,	hexachlor	0							
cas no.	87-68-3 SAC	Superov	allartz close	handed phase	0.22	50	herdus	atom Jour J	20
1400	JAC	0.6	quartz glass	oonueu phase	0.32	30	nyarogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
cyclohexa	ne, alpha-h	exachloro (al	lpha-BHC)						
cas no. 2452	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cyclohexai	ne, beta-he	xachloro (bet	a-BHC)						
cas no. 2856	319-85-7 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
cyclohexa	ne, hexachl	oro (BHC)							
cas no. 2452	608-73-1 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
decalol, tr	ans-1,10-di	imethyl-trans	-9-(geosmin)						
cas no. 1789	19700-21-1 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1,	1,1-trichlor	:0-2,2-bis (4-	chlorophenyl) (p,p'-DDT)					
cas no. 3103	50-29-3 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1,	1,1-trichlo	ro-2,2-bis(chl	orophenyl) (DI	DT)					
cas no. 3106	50-29-3 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1,	1,2,2-tetra	chloro							
cas no. 1475	79-34-5 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1,	1,2-trichlo	ro							
cas no. 1236	79-00-5 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1,	1-dichloro	-2-(2-chlorop	henyl)-2-(4-chlo	orophenyl) (0,p'-	TDE)				
cas no. 3120	53-19-0 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1	,2-dibromo	0.0							
cas no. 1226	106-93-4 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1	,2-dichloro								
cas no. 1045	107-06-2 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 1	,2-dihydro	xy (ethylene	glygol)						
cas no. 1552	107-21-1 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, 2	-(2-chlorop	henyl)-2-(4-c	hlorophenyl)-1,	1-dichloro (2,4'I	ODD)				
cas no. 3123	53-19-0 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethane, h	exachloro	0.0							
cas no. 1400	. 67-72-1 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethanol,	2-chloro								
cas no. 1329	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
1357	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethene, 1,	1-dichloro-2	2-(2-chloroph	enyl)-2-(4-chlo	rophenyl) (0,p'-]	DDE)				
cas no. 2904	3424-82-6 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethene, te	trachloro								
cas no. 1012	127-18-4 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ethene, tri	ichloro								
cas no. 1028	79-01-6 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ether, 2,2	-dichloroetl	hyl methyl							
cas no. 1158	34862-07-2 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ether, 4-b	romopheny	l phenyl							
cas no. 2394	101-55-3 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
formamid	e, N,N-din	nethyl							
cas no. 1276	68-12-2 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
furfuralde	hyde	0.0							
cas no.	98-01-1	Carl array			0.22	50	1	-411	20
1440	SAC	20M	quartz glass	open tubular	0.32	50	nyarogen	standard	28
1457	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
heptanone	e, 5-methyl	-3-							
cas no.	541-85-5 SAC	Superov	avorta aloss	handed phase	0.22	50	hudrogen	standard	20
1172	SAC	0.6	quartz glass	bondeu pnase	0.32	50	nyarogen	standard	20
hepten-2-o	one, 6-meth	nyl-5-							
1314	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
hydrazine	, 1,2-diphe	nyl							
cas no. 2299	122-66-7 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
indane, 1	4,5,6,7,8,8	-heptachloro	-2,3-epoxy-3a,4	,7,7a-tetrahydro	-4,7-met	hano-11	H-(heptachlo	or epoxide)	
cas no. 2828	1024-57-3 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
indene, 1	,2,4,5,6,7,8	0.6 8,8-octachloro	0-2,3,3a,4,7,7a-	hexahydro-4,7-m	ethano-	1H-(chl	ordane)		
cas no.	57-74-9					•	•		_
2093	SAC	Carbowax 20M	quartz glass	wall-coated open tubular	0.32	50	hydrogen	standard	28
2212	SAC	Carbowax 20M	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
2287	SAC	Carbowax 20M	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
2429	SAC	Carbowax 20M	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
2510	SAC	Carbowax 20M	quartz glass	wall-coated open tubular	0.32	50	hydrogen	standard	28

			· · · · · · · · · · · · · · · · · · ·	-					
LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
2530	SAC	Carbowax 20M	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
2542	SAC	Carbowax 20M	quartz glass	wall-coated open tubular	0.32	50	hydrogen	standard	28
2596	SAC	Carbowax 20M	quartz glass	wall-coated open tubular	0.32	50	hydrogen	standard	28
indene, 1,	4,5,6,7,8,8-	heptachloro-	3a,4,7,7a-tetra	hydro-4,7-metha	no-1H -(heptach	lor)		
cas no. 2505	76-44-8 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
ionone be	ata	0.6							
	14901_07_6								
1909	SAC	Carbowax 20M	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
1922	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
methane,	bis-(methyl	thio)							
cas no.	1618-26-4								
1256	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
methane,	bromodich	loro							
cas no.	75-27-4	a							•••
1132	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
methane,	dibromoch	loro							
cas no. 1267	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
methane.	tribromo	0.0							
cas no.	75-25-2								,
1407	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
methane, cas no.	trichloro 67-66-3								
1000	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
methenam	ine								
cas no.	100-97-0								
2014	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
naphthaler	ne								
cas no.	91-20-3								
1690	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1709	SAC	Carbowax 20M	quartz glass	wall-coated open tubular	0.32	50	hydrogen	standard	28
1720	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
naphthalei cas no.	ne, 1,2,3,4, 309-00-2	10,10-hexach	loro-1,4,4,5,8,	8-hexahydro-exo	-1,4-end	o-5,8-di	methano (al	drin)	
2536	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2537	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
naphthale	ne, 1,2,3,4,	10,10-hexach	loro-6,7-epoxy	-1,4,4a,5,6,7,8,8	a-octahy	dro-exc	0-1,4:5,8-din	nethano (dielo	drin)
cas no. 3103	60-57-1 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	. 28
		U.0							

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
naphthale	ne, 1-chlor 90-13-1	0						-	
1962	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
naphthale	ne, 2-chlor	0							
cas no. 1973	91-58-7 SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
norborner	ne-2,3-dime	thanol, 1,4,5,	6,7,7-hexachlo	oro, cyclic sulphi	te, 5-(en	dosulpł	nan)		
cas no. 2879	115-29-7 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
pentadeca	ne, 2,6,10,	0.6 14-tetramethy	l (pristane)						
1664 lie	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1675	SAC	Carbowax 20M	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
phenol				-					
cas no. 1932	108-95-2 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1961	SAC	0.6 Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	3,6-trichlo	ro							
cas no.	933-75-5	~	_						
2326	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2, cas no.	,4-dichloro 120-83-2	0.0							
2098	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2,	4-dimethyl	(m-xylenol)							
cas no. 2014	105-67-9 SAC	Superov	auartz alace	bonded phase	0.22	50	hudrogen	nton dend	20
2014	5/10	0.6	qualitz glass	bonded phase	0.52	30	nyurogen	standard	28
phenol, 2,	5-dimethyl	(2,5-xylenol)							
cas no. 2010	95-87-4 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
pehnol, 2-	amino-4-cl	nloro							
cas no.	95-85-2	0.1							
2543	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2-	chloro	20101							
cas no.	95-57-8	~							
1788	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1815	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 2-	-nitro								
cas no. 1750	88-75-5 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol. 3	,4-dimethv	0.0 (3,4-xylenol)							
cas no.	95-65-8	· · ····							
2144	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
phenol, 3-	-chloro 108-43-0								
2345	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2378	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 4-	chloro	_01/2							
cas no.	106-48-9								
2342	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2376	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phenol, 4-	chloro-3-m	ethyl							
cas no.	59-50-7	Стала стала		1	0.00	50			
2410	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2438	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phosphoni	um, (3,4-d	ichlorobenzy	l)triphenyl, chl	oride (Eulan)					
cas no.	4386-40-7 SAC	Superov	quartz alass	bonded phase	0.32	50	hudrogen	standard	20
1528	JAC	0.6	quartz glass	bonded phase	0.52	30	nyurogen	stanuaru	28
phosphori	c acid, trib	utyl ester							
cas no. 2079	126-73-8 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
		0.6		_					
cas no.	othioic acid 333-41-5	, OO-diethyl	O-[6-methyl-2	-(1-methylethyl)-	4-pyrimi	dinyl] e	ster (diazino	on)	
2382	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
phthalic a	cid, di(2-et	hylhexyl) este	er						
cas no.	117-81-7 SAC	Superar	quarta aloss	handed where	0.22	50	herdu		20
5100	SAC	0.6	quartz glass	bolided phase	0.52	50	nyurogen	stanuaru	20
phthalic a	cid, diethyl 84-66-2	lester							
2333	SAC	Carbowax	quartz glass	wall-coated	0.32	50	hydrogen	standard	28
2246	SAC	20M		open tubular	0.00	50			
2340	SAC	20M	quartz glass	bonded phase	0.32	50	nydrogen	standard	28
phthalic a	cid, dioctyl	lester							
cas no. 3106	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
• ••	11 (2)	0.6							
picoline, a	lpha (2-me 109-96-8	thylpyridine)							
1180	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
nicoline h	oeta (3-meti	0.0 hvlnvridine)							
cas no.	108-99-6	ny py name)							
1252	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
picoline, g	amma (4-n	nethylpyridin	e)						
cas no.	108-89-4	a	. .		•				_
1257	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
propane,	1,2-dichlor	D							
cas no.	78-87-5	C	annout1	hand-d-1-	0.20	50	1	-4 1 - •	
1020	SAC	Superox 0.6	quartz glass	oondea phase	0.32	50	nyarogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
propane,	l-chloro-2,3 106-89-8	epoxy (epic	hlorohydrin)						
1169	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
propanoic cas no.	acid (prop 79-09-4	ionic acid)							
1481	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
propanoic	acid, 2-me	thyl							
1514	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
propene, 2	2,3-dichloro)							
cas no. 1066	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
propene, o	is-1,3-dichl	oro							
cas no. 1183	542-75-6 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
propene, t	rans-1,3-di	chloro		-					
cas no. 1112	542-75-6 SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
propionan	ilide, 3′,4′	-dichloro (pr	opanil)						
cas no. 3197	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
pyrazine,	2-isopropyl	-3-methoxy							
1410 las	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
thianapht	nene 95-15-8								
1751 l	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, 2	,4-dinitro			-					
2420	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, 2	,6-dinitro								
2322	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, 2	-chloro								
1277 las	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1291	SAC	Carbowax	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, 2 cas no.	-chloro-4-n 121-86-8	itro							
1965	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, 3	-chloro								
1288 10.	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1301	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
toluene, 4-	-chloro 106-43-4								
1291	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1304	SAC	0.6 Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, 4- cas no.	-chloro-2-nii 89-59-8	tro							
1901	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1915	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, 4	-chloro-3-ni	tro							
cas no.	89-60-1	~			0.00	50	1	- to m do m d	20
2039	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	nydrogen	standard	28
toluene, 6	-chloro-2-ni	tro							
cas no. 1896	83-42-1 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene a	Inha, alnha	0.0 -dichloro (be	enzal chloride)						
cas no.	98-87-3		······································						
1672	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
1690	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluene, a	lpha-chloro	(benzyl chlo	oride)						
cas no.	100-44-7	C	avent- alaga	handed phase	0 32	50	hydrogen	standard	28
14/8	SAC	0.6	quartz glass	bonded phase	0.52	50	nyurogen	standard	20
1497	SAC	Carbowax 20M	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluidine,	2-chloro-p-								
cas no. 2164	615-61-6 SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluidine,	3-chloro-o-	0.6							
cas no.	87-60-5	C		handed share	0.22	50	hudrogan	standard	28
1893	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	nyarogen	stanuaru	20
toluidine,	3-chloro-p-	-							
cas no. 1957	95-74-9 SAC	Superox	quartz glass	bonded phase	0.32	50	hvdrogen	standard	28
1757	5110	0.6	quarte grass			• •	;		
toluidine,	4-chloro-o-	- :							
cas no.	95-69-2	a	<i>,</i> ,	1	0.22	50	herdno son	standard	28
2155	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	nyarogen	stanuaru	20
toluidine,	5-chloro-o	-							
cas no.	95-79-4								•
2145	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluidine,	6-chloro-m	1-							
cas no. 1975	SAC	Superox	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
toluidine	6-chloro-o	-							
cas no.	87-63-8								
2127	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

LTP Index	Column Origin	Stationary Phase	Column Material	Column Type	ID (mm)	LEN (m)	Carrier Gas	Sample Type	LIT Ref
triazine-2, cas no.	4-diamine, 1912-24-9	2-chloro-N-e	thyl-N'-(1-met	hylethyl)-1,3,5- (atrazine)			
2776	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
triazine-2,	4-diamine,	6-chloro-N,N	V'-bis (1-methy	vlethyl)-1-3,5- (pr	opazine)			
cas no.	139-40-2								
2682	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
2682	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28
triazine-2,	4-diamine,	6-chloro-N,N	V'-diethyl-1-3,5	5- (simazine)					
cas no.	122-34-9		-						
2872	SAC	Superox 0.6	quartz glass	bonded phase	0.32	50	hydrogen	standard	28

Figure 1 LTPRI test mixture chromatographed on PS 255

- C cholesterol B benzene (not used in final mix) H cis-hydrindane N naphthalene De diethyl phthalate Pr pristane Py pyrene Dh di-(2-ethylhexyl) phthalate Pe perylene

Unmarked peaks are impurities/septum bleed etc.

Figure 2 Grob test mix and \underline{n} -alkanes chromatographed on statically coated Carbowax 20M column

C₁₀ с¹¹1 × с₁₂ . ၂ ၂ Figure 4 LTPRI test mixture chromatographed on non-immobilised Carbowax, 20M column Ä င<mark>1</mark>4 င₁₅ -رم 16 N₁C17 ۵., ر 18 ် ၂၅ c_20 c_1 c_{22 Ac} At - anthracene (not used in final mix) Other peaks are impurities/septum bleed etc. c_23 ۵ c₂₄ C₂₅ D - diethyl phthalate Ac - acenaphthalene An - anisole F - furfural P - pristane N - naphthalene I - ionone c_{26} oX - o-xylene At, с₂₈

56

Figure 5 LTPRI test mixture chromatographed on immobilised Superox 0.6 column

Department of the Environment

Standing Committee of Analysts

Members assisting with the production of this booklet.

B T Ashurst	2	R Mackison	2	
F B Basketter	1	Dr P J Matthews	2	
Dr G A Best	1	J C McCullins	1	
J Betterley	2	D Meek	2,3,4	
P Chave	1	Dr R Mounce	4	
Dr G W Clayfield	1	P J Morries	1,3	
B E P Clement	1	D Myles (deceased)	1	
Dr R L Cooper	1	Dr H A Painter	1,2	
Dr B T Croll	1,2,3	J F Palframan	2	
Dr J V Dadswell	1	Dr S J Patterson	1	
I W Davies	4	J M Perkin	2	
E A Deal	4	L R Pittwell	1,2,3	
T A Dick	1	Dr J E Portmann	1	
M Fielding	2	J Prest	2	
M G Firth	2	L D Purdie	1	
M C Finniear	1	B D Ravenscroft	1	
Dr J Gardener	1	L A Richards	1	
Dr M Gardener	1	M R Richardson	2	
Dr R Gardiner	1	Prof J P Riley	1	
J R Garlick	1	S Scott	2	
G I Goodfellow	1	Dr D Taylor	1	
T R Graham	1	Dr K C Thompson	1	
K Guiver	1	N J Truslove	2	
E Hodges	1	Dr A M Ure	1	
G W Horne	1	A Waggot	2,4	
Dr D T E Hunt	1	P J Walker	1	
M R Hurcombe	1	$-\mathbf{B} \mathbf{T} \mathbf{W}$ hitham	1	
Dr J G Jones	1	P J Whittle	1	
J S Leahy	1	Dr D A Williams	1	
N de-J Loaring	2	Dr R Wood MAFF	1	
P J G Long	5	Dr A Woodbridge	2	
Main Committee member 1		Origination of the Project 3		
Organic Working Group 2		Evaluation and Development 4		
		Programme Development 5		

(Note the Main Committee listings include past members who took part in the inception of the project).

Thanks also to IBM (UK), HNU Nordion Instruments Ltd., Finland and the Health and Safety Executive for information, and to British Gas plc and British Petroleum for checking programmes.

HMSO publications are available from:

HMSO Publications Centre

(Mail and telephone orders only) PO Box 276, London, SW8 5DT Telephone orders 01-873 9090 General enquiries 01-873 0011 (queuing system in operation for both numbers)

HMSO Bookshops

49 High Holborn, London, WC1V 6HB 01-873 0011 'Counter service only)
258 Broad Street, Birmingham, B1 2HE 021-643 3740
Southey House, 33 Wine Street, Bristol, BS1 2BQ (0272) 264306
9-21 Princess Street, Manchester, M60 8AS 061-834 7201
80 Chichester Street, Belfast, BT1 4JY (0232) 238451
71 Lothian Road, Edinburgh, EH3 9AZ 031-228 4181

HMSO's Accredited Agents

(see Yellow Pages)

and through good booksellers

£6.90 net

ISBN 0 11 752222 8

ł

17

. 14

ľ

l

Í,