The Tentative Identification of Volatilizable Organic Compounds by Linear Temperature

 Programmed Gas ChromatographicRetention Indices with Notes on Other Methods for Identifying Organic Substances; 1988

Methods for the Examination of Waters and Assoctated Materfals

The Tentative Identification of Volatilizable Organic Compounds by Linear Temperature Programmed Gas Chromatographic Retention Indices
 with Notes on Other Methods for Identifying Organic Substances; 1988

Note, the use of the word 'Tentative' in the title refers to the identification and not, as is usual in this series, to the degree of testing.

Methods for the Examination of Waters and Associated Materials

Within the Method for the Examination of Waters and Associated Materials series are four-ring binders suitable for use in storing reports. These are available from HMSO Price $£ 4$ (ISBN 011 7514373)

Standing order service

Placing a standing order with HMSO BOOKS enables a customer to receive other titles in this series automatically as published.

This saves the time, trouble and expense of placing individual orders and avoids the problem of knowing when to do so.

For details please write to HMSO BOOKS (PC 13A/1). Publications Centre, PO Box 276, London SW8 5DT quoting reference

X22.04.22

The standing order service also enables customers to receive automatically as published all material of their choice which additionally saves extensive catalogue research. The scope and selectivity of the service has been extended by new techniques, and there are more than 3,500 classifications to choose from. A special leaflet describing the service in detail may be obtained on request.

The Tentative Identification of Volatilizable Organic Compounds by Linear Temperature Programmed Gas Chromatographic Retention Indices (LTPRI), with an Inventory of Indices, with Notes on other Methods for Identifying Organic Substances; 1988.

This procedure for tentatively identifying volatilizable organic compounds is based on the WRC Final Report and Inventories of Indices compiled under DOE Contract PECD 7/7/188-4/84. LTPRI is often suitable for tentative identification and for rapid screening of samples when GCMS is not practicable.
Contents
About this series 4
Warning to users 5
Identification of Unknown Organic Substances 6
Introduction to LTPRI 7

1. Performance Characteristics of the Procedure 8
2. Outline Procedure 9
3. Standard Columns 9
4. Chromatographic Conditions 10
5. Calculation of Indices 11
6. Substance Identification 12
7. Commonly Used Extraction Solvents 12
8. Standard substances 12
9. Hazards 12
10. Extension of the Method 13
Appendix 14
A1. Rigorous Calculation of Linear Temperature Programmed Retention Indices 14
A2. Examples of Computer Calculation Programmes 15
References 24
Address for Correspondence 25
Tables 26
Figures 55
Membership responsible for this booklet 60

About This Series

This booklet is part of a series intended to provide both recommended methods for the determination of water quality, and in addition, short reviews of the more important analytical techniques of interest to the water and sewage industries.

In the past, the Department of the Environment and its predecessors, in collaboration with various learned societies, have issued volumes of methods for the analysis of water and sewage culminating in 'Analysis of Raw, Potable and Waste Waters'. These volumes inevitably took some years to prepare, so that they were often partially out of date before they appeared in print. The present series will be published as series of booklets on single or related topics; thus allowing for the replacement or addition of methods as quickly as possible without need of waiting for the next edition. The rate of publication will also be related to the urgency of requirements for that particular method, tentative methods and notes being issued when necessary.

The aim is to provide as complete and up to date a collection of methods and reviews as is practicable, which will, as far as possible, take into account the analytical facilities available in different parts of the Kingdom, and the quality criteria of interest to those responsible for the various aspects of the water cycle. Because both needs and equipment vary widely, where necessary, a selection of methods may be recommended for a single determinand. It will be the responsibility of the users-the senior technical staff-to decide which of these methods to use for the determination in hand. Whilst the attention of the user is drawn to any special known hazards which may occur with the use of any particular method, responsibility for proper supervision and the provision of safe working conditions must remain with the user.

The preparation of this series and its continuous revision is the responsibility of the Standing Committee
of Analysts (to review Standard Methods for Quality Control of the Water Cycle). The Standing Committee of Analysts is a committee of the Department of the Environment set up in 1972. Currently it has 9 Working Groups, each responsible for one section or aspect of water cycle quality analysis. They are as follows:

1.0 General principles of sampling and accuracy of results
2.0 Microbiological methods
3.0 Empirical and physical methods
4.0 Metals and metalloids
5.0 General nonmetallic substances
6.0 Organic impurities
7.0 Biological monitoring
8.0 Sewage Works Control Methods
9.0 Radiochemical methods

The actual methods and reviews are produced by smaller panels of experts in the appropriate field, under the overall supervision of the appropriate working group and the main committee.

The names of those associated with this method are listed inside the back cover. Publication of new or revised methods will be notified to the technical press, whilst a list of Methods in Print is given in the current HMSO Sectional Publication List No 5.

Whilst an effort is made to prevent errors from occurring in the published text, a few errors have been found in booklets in this series. Correction notes and minor additions to published booklets not warranting a new booklet in this series will be issued periodically as the need arises. Should an error be found affecting the operation of a method, the true sense not being obvious, or an error in the printed text be discovered prior to sale, a separate correction note will be issued for inclusion in that booklet.

L R PITTWELL
 Secretary and Chairman

11 August 1988

Warning to Users

The analytical procedures given in this booklet should only be carried out by competent trained persons, with adequate supervision when necessary.

Local Safety Regulations must be observed.
Laboratory procedures should be carried out only in properly equipped laboratories.

Field Operations should be conducted with due regard to possible local hazards, and portable safety equipment should be carried.

Care should be taken against creating hazards for one's self, one's colleagues, those outside the laboratory or work place, or subsequently for maintenance or waste disposal workers. Where the Committee have considered that a special unusual hazard exists, attention has been drawn to this in the text so that additional care might be taken beyond that which should be exercised at all times when carrying out analytical procedures. Reagents of adequate purity must be used, along with properly maintained apparatus and equipment of correct specifications. Specifications for reagents, apparatus and equipment are given in manufacturers' catalogues and various published standards. If contamination is suspected, reagent purity should be checked before use. Lone working, whether in the laboratory or field, should be discouraged.
The best safeguard is a thorough consideration of hazards and the consequent safety precautions and remedies well in advance. Without intending to give a complete checklist, points that experience has shown are often forgotten include: laboratory tidiness, stray radiation leaks (including ultra violet), use of correct protective clothing and goggles, removal of toxic fumes and wastes, containment in the event of breakage, access to taps, escape routes, and the accessibility of the correct and properly maintained first-aid, fire-fighting, and rescue equipment. Hazardous reagents and solutions
should always be stored in plain sight and below face level. Attention should also be given to potential vapour and fire risks. If in doubt, it is safer to assume that the hazard may exist and take reasonable precautions, rather than to assume that no hazard exists until proved otherwise.

There are numerous handbooks on first aid and laboratory safety. Among such publications' are: 'Guide to Safe Practices in Chemical Laboratories' and 'Hazards in the Chemical Laboratory', issued by the Royal Society of Chemistry, London: 'Safety in Biological Laboratories' (Editors Hartree and Booth), Biochemical Society Special Publication No 5. The Biochemical Society, London, which includes biological hazards; and 'The Prevention of Laboratory Acquired Infection', Public Health Laboratory Service Monograph 6, HMSO, London.

It cannot be too strongly emphasised that prompt first aid, decontamination, or administration of the correct antidote can save life; but that incorrect treatment can make matters worse. It is suggested that both supervisors and operators be familiar with emergency procedures before starting even a slightly hazardous operation, and that doctors consulted after any accident involving chemical contamination, ingestion, or inhalation, be made familiar with the chemical nature of the injury, as some chemical injuries require specialist treatment not normally encountered by most doctors. Similar warning should be given if a biological or radiochemical injury is suspected. Some very unusual parasites, viruses and other micro-organisms are occasionally encountered in samples and when sampling in the field. In the latter case, all equipment including footwear should be disinfected by appropriate methods if contamination is suspected. If an ambulance is called or a hospital notified of an incoming patient give information on the type of injury, especially if poisoning is suspected, as the patient may be taken directly to a specialised hospital.

Identification of Unknown Organic Substances

In the past, organic substances were identified by their chemical and physical properties, usually, but not always, after separation. This was aided by the preparation of derivatives and whether these derivatives had the expected properties.

The use of chemical and physical properties should not be entirely excluded even now. It is useful to know whether a substance is acidic or basic and in what it is soluble. Plenty of reference works are available. There are a number of additional techniques which have been developed, these include Mass Spectrometry, infra red and ultra violet absorptiomety, nuclear magnetic resonance spectrometry, as well as various techniques based on chromatographic elution times and electrophoretic separation. All have their own special uses and limitations. Specialist texts should be consulted. A brief summary follows:

Mass Spectrometry

This is one of the most favoured methods, usually with prior separation by G C or HPLC.
The mass spectrum of a single substance is dependent to a large extent on the type of ion source used and also on the spectrometer. Occasionally, compounds, some quite unusual, can be formed in the instrument and cause interference. Several good atlases of spectra exist (see Ref 16); but care is necessary when identifying an unknown substance. Some inorganic compounds can be detected even without the use of plasma sources.

IR and UV Absorptiometry

These techniques are only useful if a high concentration or some solid is available. IR can be used in a reflectance mode for examining insoluble material. Instruments are subdivided by wavelength range used. The absorption bands are indicative of structural groups, but the molecular vibrations involved are also affected by the surrounding parts of the molecule. This can cause quite marked frequency variations for a single radical. Thus the cyanide frequency depends on the adjacent bonding or coordination, and the carbonate frequency depends on the pH . Water can only be used as a solvent for a very limited part of the IR spectrum due to its own strong IR absorption bands. Several good spectral indexes are available (see Ref 17).

NMR

This form of spectrometry is rarely used except for special problems and requires a relatively high concentration of sample. The spectrum varies markedly with the resolution of the instrument. It is chiefly used for elucidating bonding and structure.

Electrophoresis

This technique is used to separate and identify charged ions, especially amino acids and peptides.

CG and Other Chromatographic Indexes

These can often be used for tentative identification of trace components. The index is dependent on the column used and on the eluent. The more indices obtained for a substance (using columns of different polarity etc), the smaller the number of substances that need to be considered in the final identification. These techniques can sometimes be used to show that a substance is not present at above the chromatographic limit of detection. This booklet gives details of one method, the Linear Temperature Programmed Gas Chromatographic Retention Index (or LTPRI). See also Refs 13, 15 and 20.

Introduction to LTPRI

While Gas Chromatography coupled to a Mass Spectrometer is usually the method of choice for the identification of unknown compounds detected by gas chromatography, there are laboratories which lack such facilities and also investigations where the use of an alternative method of identification is required or additional confirmation is needed. The procedure outlined in this booklet provides such an alternative (1-3).

Unknown compounds found in water may be tentatively identified from their gas chromatographic linear temperature programmed retention indices (LTPRIs). Normally, retention indices are calculated for isothermal conditions and related to the retention times of members of a homologous series of n-alkane standards and quoted in terms of carbon number $\times 100$ (Kovat's Indices); but environmental samples usually contain organic compounds with a wide range of boiling points which cannot be eluted from a gas chromatograph at one single temperature. Hence in this procedure, the equivalent carbon number or retention index is calculated using a linear temperature programmed gradient. The measured LTPRI values are compared with these in a central computer library or table containing data for relevant compounds, generated under 'ideal' conditions, thus enabling tentative identifications to be made.

Retention times vary with the type of column used (including method of preparation) and also with its age and prior usage. In addition they also vary with the elution conditions. Hence, it is essential that the columns and conditions used be as identical as is possible with those used when compiling the inventory, and that frequent recalibrations be made (as experience dictates) in order to allow for the effects of ageing and use. Examples of the effects of column variation and age are included in the test data.

This procedure is intended to fit in with other laboratory operations, and so may in part, but not in its entirety, be very flexible. Hence, the usual method format has been modified, and only those parts of the method requiring rigid standardization have been given in detail. All other steps are only given in outline. When seeking to identify a compound, users should take into account the effects of any preliminary steps which may eliminate some possible substances. Blanks have not been mentioned, but must not be forgotten. It would not be helpful, having identified a substance, to find that it originated from a reagent and not from the original sample.

While intended as a means of reducing the list of possibilities which must be checked when identifying an unknown Gas Chromatographic peak, there is the possibility of using the procedure to confirm the absence of a substance in identifiable amounts by noting whether there are any peaks present which, within analytical error, might be attributable to that substance.

Using an electron-capture detector (ECD), peaks may be seen in the chromatograms which are due to compounds present at a concentration too low to be identified by GC-MS. Whilst ECD does not respond well to n-alkanes, LTPRIs can be calculated and tentative identifications obtained, provided the n-alkane standards or a series of other EC responsive compounds such as the n-chloralkanes, etc are run at sufficiently high concentrations. (Refs 18 and 20)

Recently, commercial instruments have been developed using a variety of detectors-ECD, FID, ATD, FPD, PID and MS. In addition homologous series of compounds for use as retention index standards with such detectors are also available (Ref 19).

See also published Health and Safety Executive Work (Ref 20)

Measurement of Linear Temperature Programmed Retention Indices

1 Performance Characteristics of the Procedure

1.1	Substances Identified	Substances, soluble in organic solvents, giv- ing recognizable gas chromatographic peaks with either non-polar (polydimethylsiloxane) or polar (polyethyleneglycol or similar), coated columns (for example OV1 or Carbowax 20M).
1.2	Sample Types	Waters, soils and sediments.

[^0]
2.1 Sample Preparation

Samples are extracted into a suitable solvent which should, if possible, be more volatile than the substance to be identified, or whose presence is sought. Acidic compounds should be extracted from acid solution, bases should be extracted from alkaline solution; this may preclude some solvents-ethers are soluble in acids.

2.2 Gas Chromatography

The extract either has a reference mixture of n-alkanes (spread uniformly over the probable range of LTPRI values), or a series of easily detected compounds with accurately known RI, such as n.chloroalkanes or n-alkylbis (trifluoromethyl) phosphine sulphides (Ref 19), coinjected with it or added to it. Alternatively, a few substances of known LTPRI with values close to that of the substance suspected may be used as standards. If necessary for clarity, the n-alkane plot can be run as a separate external standard provided adequate control substances are added to each run to ensure accurate correlation.

The amount of standard used must be based on experience, but should be just sufficient to give clear markers on the chromatogram. The amount of sample used will depend on the amount of material available and on the size of the peaks produced in the chromatogram (See Introduction, last paragraph and Section 5.1 first paragraph).
2.1 The extract is examined by gas chromatography with flame ionization or any other suitable detector using either or both of two standard columns which have been precalibrated using a mixture of n-alkanes. (See Sections 3 and 4).

2.3 Calculation of the Index

The GC/FID chromatogram for the extract is compared with the calibration chromatogram (or the plot of the retention times for the n-alkanes added to the sample). Figs $1-5$ show typical curves for various column types.
2.3.1 The LTPRI of the peak (or peaks) to be tentatively identified is calculated first by noting the two closest n-alkanes, one on either side of the peak to be identified, and then by measuring the distance (time) that the mid point of the peak to be identified is along a smooth curve passing through the elution times for the various alkanes, measurement being from the nearest alkane peak below the peak to be identified.
2.3.2 The first two numbers of the LTPRI are the number of carbon atoms in the lower reference n-alkane (the first number is zero for nonane and below); the second two numbers are the percentage time (or chart trace distance) between the n-alkane peak designated and the n-alkane peak next above it, corrected for the slight variation of retention time with carbon number. (This curve is slightly S-shaped).
2.3.3 If reference substances other than n-alkanes are used (as is now commonly the case), calculations are made so that the index obtained is still n-alkane based.

2.4 Analytical Quality Assurance

Because columns deteriorate, periodic quality checks are essential using either a reference n-alkane mixture or a selection of known substances.

It is advisable, if the substances are available, to compare the peak from the sample with peaks of the probable substances obtained under identical conditions. Good correspondence does not guarantee identification, but it does greatly limit the number of probable compounds. The presence of a hitherto unlisted compound can occur.

3 Standard Columns

3.1 Non-Polar

A non-polar polydimethylsiloxane PS 255 capillary column or similar OVI column. (See Fig 1 for a typical chromatogram) (Note that in Tables 4 and 5 most non polar column data are listed as OV1, data for PS 255 are identical within normal variations).

3.2 Polar

(The performance of both these columns changes more rapidly with use than does that of the non-polar column above. Regular checking of performance and, if necessary, replacement are essential).

EITHER

3.2.1 A polar Carbowax 20M column
(Figs 2-4 show the effects of various methods of coating on the curves obtained)
OR
3.2.2 A polar Superox 0.6 cōlumn
(See Fig 5 for a typical curve).
3.3 Dimensions- approximately 50 m of 0.2 mm bore, coating thickness $0.2 \mu \mathrm{~m}$.
3.4 Availability- all three columns are available commercially, but preparational details, which are very intricate, are given in Ref 3, a copy, of which is deposited in the Department of the Environment Library.

Commercial instruments with twin columns and built in computers for retention index calculations are available.

4 Chromatographic Conditions

Chromatograph: The test data given in this booklet were obtained using an Erba Science 4160 chromatograph, columns being changed as required.

Data processing: the peaks given as illustration were acquired and retention times measured using a Hewlett Packard 3390A reporting integrator fitted with input/output board (option 100) and interfaced with a Digital Equipment Corporation VAX 11/780 computer which was used for both data storage and calculation of LTPRIs using a polynomial curve fitting technique.

Any other equivalent equipment giving a comparable or better performance may be used. Note that information is given for manual calculation or use of other data processing equipment. The operating conditions which follow were those used to obtain the test data. If other equipment is used, follow the manufacturer's instructions and optimize conditions to achieve comparable indices.

Comparable results have been obtained on several other makes of gas chromatograph.
4.1 Operating conditions used to obtain the test data with the non-polar column.

Carrier gas: Hydrogen; head pressure set such that at ambient temperature the elution time for methane (column hold-up time) is 120 s . (See Section 9)
Injection: \quad Split; injector vent flow rate approximately $30 \mathrm{ml} / \mathrm{min}$ (split ratio approximately $15: 1$), injector temperature $200^{\circ} \mathrm{C}$. Volume injected: $1 \mu \mathrm{l}$ of sample. Standard coinjection $1.8 \mu \mathrm{l}$. Recommended concentrations are $400 \mu \mathrm{~g} / \mathrm{ml}$ for dissolved solid samples and $0.4 \mu \mathrm{l} / \mathrm{ml}$ for liquid extract samples.
Detection: Flame ionization; detector temperature $350^{\circ} \mathrm{C}$; detector gas pressures: hydrogen $0.4 \mathrm{~kg} / \mathrm{cm}^{2}$, air $1.5 \mathrm{~kg} / \mathrm{cm}^{2}$. Note some commercial instruments use electron capture detector (usually with chloroalkane, n-alkylbis (trifluoromethyl) phosphine sulphides or similar standards). Other detectors may be used for special substances (see Introduction to LTPRI, final paragraph).

Oven temperature: $30^{\circ} \mathrm{C}$ for injection then programmed immediately to rise to $330^{\circ} \mathrm{C}$ at $4^{\circ} \mathrm{C} / \mathrm{min}$ and then held at $330^{\circ} \mathrm{C}$ until no further nalkanes eluted. See also 4.3.
4.2 Operating conditions used to obtain the test data with the Polar columns

Carrier gas: Hydrogen; head pressure set such that at $60^{\circ} \mathrm{C}$ the elution time for methane (column hold-up time) is 120 s . (See Section 9).

Injection: Split; injector vent flow rate approximately $30 \mathrm{ml} / \mathrm{min}$ (split ratio approx $15: 1$); injector temperature $200^{\circ} \mathrm{C}$. Recommended

Detection: Flame ionization; detector temperature $250^{\circ} \mathrm{C}$; detector gas pressures; hydrogen $0.4 \mathrm{~kg} / \mathrm{cm}^{2}$, air $1.5 \mathrm{~kg} / \mathrm{cm}^{2}$. Note some commercial instruments use electron capture detectors (usually with chloroalkane or similar standards). Other detectors may be used for special substances.
Oven temperature: $\quad 60^{\circ} \mathrm{C}$ for injection then programmed immediately to $220^{\circ} \mathrm{C}$ at $4^{\circ} \mathrm{C} \mathrm{min}$ and held for 20 min .

Carbowax 20 M columns are not usable below $60^{\circ} \mathrm{C}$ and not reliable above $220^{\circ} \mathrm{C}$. However, their stronger absorptive capacity makes them viable for many substances eluting at $<40^{\circ} \mathrm{C}$ on other columns. The range for Superox 0.6 is $40-270^{\circ} \mathrm{C}$.
4.3 Variant Oven Temperature Programmes. Often, the same heating programme is used with both columns, and commercial instruments are available with both columns in the same furnace operated simultaneously; however, for many substances it is better to operate each column separately with different heating programmes, as for instance in Sections 4.1 and 4.2 above. Whatever the variation chosen, standards and samples must be treated in exactly the same way when determining indices.

5 Calculation of Indices

Indices may be calculated manually if necessary, but more accurate indices can be calculated, provided adequate computor facilities are available, see the Appendix and Section 5.2.

5.1 Manual Calculation using a Spline

The initial GC plot of alkane number against retention time will probably be a flattened S shape. The degree of curvature is dependent on the instrument used, and the heating programme chosen. A few are almost linear. It is this non-linearity which makes it necessary to take the shape of the curve into account when calculating a retention index from retention time data. Occasionally, overloading may occur, especially with the Carbowax column, making peaks hard to locate. If this happens, either resort to a differential plot to locate the peaks, or dilute the sample and rerun the chromatogram.

If the data cannot be fed to a suitably programmed computer for curve fitting and determination of the LTPRI; it should be plotted as a graph. Use of a very large sheet of graph paper is recommended (eg $1 \mathrm{~m} \times 2 \mathrm{~m}$) so that it is possible to subdivide the space between alkane carbon numbers sufficiently to estimate the unknown substance peak location to an accuracy of $+5 \%$ or preferably even $+1 \%$. Plot the graph of the number of carbons in the standard alkanes versus their elution times, using a plastic spline ruler held by many spline weights. The flexibility of the spline will make good allowance for the overall curvature of the graph and the effect of remote points on the section of main interest. The weights should be located at points corresponding to alkane elution times and, when obtaining a smooth curve, should not be moved more than the experimental error would allow. Superimpose the plot from the sample, using either the control additions or the n-alkane additions to align the curves. Identify the pair of alkanes between which the peak to be indexed falls and measure the percentage distance along the curve from the lower of the two alkanes to the peak intercept. This is best done either by having a fine calibrated scale on the side of the spline itself or by use of a planimeter (as used for measuring distances on maps). Then calculate the distance along the curve that the peak to be identified is beyond the lower alkane peak as a percentage of the distance between the two alkane peaks. (See Section 2.4.2 for how to express the index).

The LPTRI so obtained may then be compared with data in Tables 4 and 5, or in the library of compounds held in the WRC data system, and a list of identifications produced in probability order.

If substances other than n-alkanes are used (see Ref 19, or other suitable materials of known index), use the appropriate Retention Index numbers instead.
5.2 See Ref 7 for yet another alternative approximate calculation technique. See Ref 21 for a general reference to the cubic spline technique with a listing of available FORTRAN discs.

6 Substance Identification

7 Commonly Used Extraction Solvents

6.1 Tentative Identification

6.1.1 Identification of an unknown

Consult tables 4 and 6 which list already determined indices for methyl silicone and polyethylene glycol columns respectively. Always compare data only with that obtained using the same column. (See also 6.3 below)

6.1.2 Verification of the presence or absence of a known substance.

Tables 5 and 7 give Retention Indexes for a list of known substances listed by column type as above.

6.2 Corroboration of Data

Prepare solutions of suspected compounds in the same solvent and spike the sample with them and rerun on the same column to see if the elution peaks coincide.

6.3 New Data

The Water Research Centre collect data on newly measured substances. For enquiries on additions to the tables and new indices contact the address given below. If giving or enquiring about indices, always state the column used.

Water Research Centre or Medmenham Laboratory
Stevenage Laboratory
PO Box 16, Marlow
SL7 2HD
United Kingdom
Stevenage, Herts, SG1 1TH
United Kingdom
(Stevenage (0438) 312444)
WRC also keep a record of data from a variety of non-standard columns.

The following are the most commonly used solvents for extracting samples:
n-Pentane
Dichloromethane
Diethyl ether
n -Hexane and Carbon disulphide may also be used for some compounds

8 Standard	
Substances	The original standards on which the indices are based are normal alkanes from pentane or hexane to $\mathrm{C}_{40} \mathrm{H}_{82}$. Above $\mathrm{C}_{26} \mathrm{H}_{54}$ alternate alkanes may be used.
8.1 A series of other commonly encountered substances with a useful range of volatil-	
ities eg n-chloroalkanes or another homologous series, such as n-alkylbis	
(trifluoromethyl) phosphine sulphides, with better detection characteristics than	
n-alkanes may be used provided their retention indices are accurately known. Readily	
detected substances with accurately known RI may also be added as internal standards.	

9 Hazards
Hydrogen is flammable and mixtures with air etc are potentially explosive. If released into air as a high pressure jet it can be self igniting. A good safety guide is given in Ref 14. Alternatively, helium or other gas may be used, but the effect on index measurement should be checked.

All the solvents are flammable and volatile, some are narcotic and toxic. Ethers tend to form explosive peroxides on storage (see Ref 12). Ensure good ventilation, absence of flames and sparks and check the hazard specific to the chosen solvent before use.

10 Extension of the Method

Provided columns and conditions are standardised, other columns than those given here can be used. WRC has list of Indexes for many compounds on a variety of columns.

If high temperature capillary column chromatographs are used, it has been shown that the n-alkanes provide a useful series of peaks up to C_{70} and even to C_{80}; though at such temperatures and molecular weights many compounds will decompose and give confused multiple peaks due to the fragments; charring may also occur.

Other detectors than FID can be used with other homologous series of compounds with known LTPRI than n-alkanes. (See Ref 19).

Appendix

A. 1 Rigorous Calculation of Linear Temperature Programmed Retention Indices

The Kovats method of assigning retention indices calculates the logarithmeic retention of a solute interpolated between those of two standard compounds (4). The standard compounds can be comprised of any homologous series of organic compounds. The standards most commonly adopted are the n -alkane series. The logarithmic relationship which prevails under isothermal gas chromatographic operating conditions is replaced, under linear temperature programmed elution, by a near-linear relationship expressed by the equation of Van Den Dool and Kratz (5)

$$
\mathrm{I}=100 \mathrm{z}+100 \frac{\left[\mathrm{t}_{\mathrm{Rx}}-\mathrm{t}_{\mathrm{R}}\right]}{\left[\mathrm{t}_{\mathrm{Rz}+1}-\mathrm{t}_{\mathrm{Rz}}\right]}
$$

where I = linear temperature programmed retention index
$\mathrm{t}_{\mathrm{Rx}}=$ retention time of unknown
$t_{R z}=$ retention time of the n-alkane (with Z carbon atoms) eluting immediately before the unknown
$\mathrm{t}_{\mathrm{kz}+1}=$ retention time of the n -alkane eluting immediately after the unknown
However, it has been clearly demonstrated that the linear relationship between retention data for the n -alkane series does not strictly hold true especially at the low molecular weight end of the series (6). Thus other approaches to the fitting of a mathematical function to retention time data have been explored. These have included the application of polynomial fits and various cubic spline techniques ($6,7,8$).

The method used when calculating the linear programmed retention indices given in Tables $1-5$ was a computerized polynomial routine which used the Water Research Centre in-house computer-a DEC VAX 11/780. It utilized two Fortran sub-routines which are derived from the DEC VAX NAG library and which is not generally accessible. However the following text provides references which give the information on which these sub-routines are based and from which users may work out their own programme.

The method employed is due to Forsythe (9) and is based upon the generation of a set of polynomials orthogonal with respect to summation over the normalized data set. The extensions due to Clenshaw (10) to represent these polynomials as well as the approximating polynomials in their Chebyshev-series forms are incorporated. The modifications suggested by Reimsch and Gentleman (11) to the method originally employed by Clenshaw for evaluating the orthogonal polynomials from the Chebysev-series representations are used to give greater numerical stability.

The routine determines the least squares polynomial approximations of degrees $0,1 \ldots \mathrm{~K}$ to the set of data points $(X(R), Y(R))$ with weights $W(R)(R=1,2, \ldots M)$. The value of $K+1$ when K is the maximum degree required is specified by the user.

The approximation of degree I has the property that it minimizes SIGMA (I), the sum of the squares of the weighted residuals $\operatorname{EPS}(R)(R=1,2, \ldots M)$, where

$$
\operatorname{EPS}(R)=W(R) X(Y(R)-F(R))
$$

and $F(R)$ is the value of the polynomial of degree I at the Rth data point.
Each polynomial is represented in the Chebyshev-series form with normalized argument X . This argument lies in the range -1 to +1 and is related to the original variable X by the linear transformation

$$
\mathrm{X}=(2 \times \mathrm{X}-\mathrm{XMAX}-\mathrm{XMIN}) /(\mathrm{XMAX}-\mathrm{XMIN}) .
$$

Here XMAX and XMIN are respectively the largest and smallest values of $\mathrm{X}(\mathrm{R})$. The polynomial approximation of degree I is represented as

$$
\begin{aligned}
& 0.5 \times \mathrm{A}(\mathrm{I}+1,1) \times \mathrm{T}_{0}(\overline{\mathrm{X}})+\mathrm{A}(\mathrm{I}+1,2) \times \mathrm{T}_{1}(\overline{\mathrm{X}}) \\
& +\mathrm{A}(\mathrm{I}+1,3) \times \mathrm{T}_{2}(\overline{\mathrm{X}})+\ldots .+\mathrm{A}(\mathrm{I}+1, \mathrm{I}+1) \times \mathrm{TI}(\overline{\mathrm{X}})
\end{aligned}
$$

where TJ (X) is the Chebyshev polynomial of the first kind of degree J with argument $(\overline{\mathrm{X}})$.

For each value of $\mathrm{I}(\mathrm{I}=0,1, \ldots \mathrm{~K})$ the routine produces the values of $\mathrm{A}(\mathrm{I}+1, \mathrm{~J}+1)(\mathrm{J}=0,1 \ldots \mathrm{I})$, together with the value of the root mean square residual $\mathrm{S}(\mathrm{I}+1)$ defined by the square root of SIGMA (I)/(M-I-1). In the case $\mathrm{M}=\mathrm{I}+1$ the routine sets the value of $\mathrm{S}(\mathrm{I}+1)$ to zero.

A further routine evaluates the polynomial:

$$
\begin{aligned}
& 0.5 \times \mathrm{A}(1) \times \mathrm{T}_{0}(\overline{\mathrm{X}})+\mathrm{A}(2) \times \mathrm{T}_{1}(\overline{\mathrm{X}})+\mathrm{A}(3) \times \mathrm{T}_{2}(\overline{\mathrm{X}})+. . \\
& +\mathrm{A}(\text { NPLUS } 1) \times \mathrm{T}_{\mathrm{N}}(\overline{\mathrm{X}})
\end{aligned}
$$

for any value of $\overline{\mathrm{X}}$ satisfying $-1 \leqslant \mathrm{X} \leqslant 1$. Here $\mathrm{Tj}(\mathrm{X})$ denotes the Chebyshev polynomial of the first kind of degree J with argument $\overline{\mathrm{X}}$. The value of $\operatorname{NPLUS} 1=\mathrm{N}+1$ is prescribed by the user.

While the mathematics of this system of calculation appears complex it is nevertheless simple in operation and provides reliable 'best fit' data.

A. 2 Examples of Computer Calculation Programmes

The following examples shows how such a programme was developed for use on computers using IBM and BBC 'BASIC'. They employ a cubic spline approach.

BBC users see Section A2.1. IBM users see either A2.2 or A2.1 plus A2.3.
For more information, using Fortran, see also Ref 21. It is known that other suitable programmes also exist. It is suggested that new users of this method check the suitability of their chosen programme.

A2.1 Using BBC ' ${ }^{\text {BASIC }}{ }^{\prime}$

1REM
2REM
3REM
4REM
5REM
6REM
7REM
9
100NERROR:REPORT:END
11
90GOSUB 1000: REM initialise variables
99
100FORTT\% = 0 TO 1
110GOSU 2000: REM input-data
120GOSU 1500: REM Test spline against existing routines
186NEXT
900END
999
1000REM Subroutine to initialise variables
1010
1100 DIMx(40,.y(400, $\operatorname{knots}(40), \mathrm{U}(40)$
1110 DIM Unknown X(40), Old-calc(40)
1490RETURN
1499
1500REM Subroutine to test spline against existing progam
1509
1510PRINT' 'titles': @\%=\&20306: REM Change to PRINT USING ££.£££
1519 : REM
1520 TIME $=0:$ dydx $1=1 \mathrm{E} 26:$ dydxn $=1 \mathrm{E} 26:$ GOSUB $10000:$ T\% $=$ TIME
1530PRINT"Time taken to calculate 2nd order derivatives = "T $\% / 100 ;$ " secs." '
1540TIME $=0:$ FORI $\%=$ TOM $\%: X=$ UnknownX(I \%):GOSUB1 $1000:$ NEXT:T $\%=$ TIME
1550PRINT"Time taken to calculate interpolated value $=$ "T $\% / 100 * \mathrm{M} \%$);" secs"
1559
1560PRINT" " "Retention Calculated indices"
1570PRINT" time/min new old" ${ }^{\prime \prime}$,
$1600 \mathrm{FORJ} \%=1 \mathrm{TOM} \%$
1610@\% = \&20306:PRINT" "UnknownX(J\%):" ";
1620@\% = \&20106:X = UnknownX(J\%):GOSUB11000: PRINTspline"
$1630 @ \%=\& 20106:$ PRINTOld-calc(J\%)
1650NEXT
1990RETURN
1999
2000REM Subroutine input-data
2010
2050REM Routine to input test data from DATA statements
2099
2100 READ N\% : REM Input number of $x \& y$ values
2105 READ titles : REM Input file title
2109
2110 FOR I $\%=1$ TO N\%
2120 READ $y(I \%), x(I \%) \quad$: REM Input $N \%$ pairs of x, y values
2130 NEXT I\%
2149
2150 READ M\% : REM Input number of unknown values
2159
2160 FOR I $\%=1$ TO M $\%$
2170 READ Old-cal (I\%) : REM Input original calculated values
2180 READ UnknownX(I\%) : REM Input unknown x values
2190 NEXT I\%
2199
2290RETURN
2299
2500rem **** Test Data ${ }^{* * * *}$
2509
2510DATA 25."Non-Polar Column (24 standards) ${ }^{\prime \prime}$
2519
2520DATA 700. 4.319
2530DATA 800. 6.448
2540DATA 900. 9.629
2550DATA 1000. 13.455
2560DATA 1100. 17.439
2570DATA 1200. 21.340
2580DATA 1300. 25.062
2590DATA 1400. 28.578
2600DATA 1500. 31.897
2610DATA 1600. 35.049
2620DATA 1700. 38.037
2630DATA 1800. 40.899
2640DATA 1900. 43.640
2650DATA 2000. 46.283
2660DATA 2100. 48.828
2670DATA 2200. 51.288
2680DATA 2300. 53.659
2690DATA 2400. 55.937
2700DATA 2500. 58.123
2710DATA 2600. 60.220
2720DATA 2800. 64.149
2730DATA 3000. 67.823
2740DATA 3200. 71.298
2750DATA 3600. 78.863
2799
2800DATA 8
2809
2810DATA 849. 8.018
2820DATA 975. 12.709
2830DATA 1148. 19.378
2840DATA 1248. 23.167
2850DATA 1252. 23.306
2860DATA 1312. 25.477
2870DATA 1913. 44.021
2880DATA 2505. 58.228
2999

3010DATA 20. "Polar Column (20 standards)"
3019
3020DATA 1000. 5.014
3030DATA 1100. 7.262
3040DATA 1200. 10.211
3050DATA 1300. 13.541
3060DATA 1400. 16.981
3070DATA 1500. 20.361
3080DATA 1600. 23.621
3090DATA 1700. 26.736
3100DATA 1800. 29.720
3110DATA 1900. 32.580
3120DATA 2000. 35.325
3130DATA 2100. 37.957
3140DATA 2200. 40.493
3150DATA 2300. 42.936
3160DATA 2400. 45.298
3170DATA 2500. 47.595
3180DATA 2600. 49.825
3190DATA 2800. 54.104
3200DATA 3000. 58.143
3210DATA 3200. 62.658
3219
3300DATA 6
3309
3310DATA 1009. 5.174
3320DATA 1234. 11.339
3330DATA 1265. 12.378
3340DATA 1474. 19.473
3350DATA 2636. 50.480
3360DATA 3104. 60.591
9999
10000 REM Subroutine to calculate spline
10010
10050REM Given two arrays $x($) and $y()$ this procedure
10060 REM calculates the second derivatives of the
10070REM interpolating function at the tabulated points $\mathrm{x}(\mathrm{)}$.
10099
10100REM **** Arguments ****
10109
10110REM Global $x() x$ values
10120REM $y() y$ values
10130REM knots() second derivatives of the
10140REM
10150REM
10199
10200REM
10210REM
10220REM
10230REM
10240REM
10250REM
10299
10300REM **** Set lower end point condition ****
10309
10310REM Set condition to be a natural spline
10319
10320 If dydx1 $>1 \mathrm{E} 25 \operatorname{knots}(1)=0$
10330 If dydx $1>\quad U(1)=0$
10339
10340REM Set to specified first derivative
10349
10350 If dydxl $<1 \mathrm{E} 25 \operatorname{knots}(1)=-0.5$
10360 If dydx $1<1 E 25 \quad U(1)=(3 /(x(2)-x(1)) *((y(2)-y(1)) /(x(2)-x(1))-d y d x 1)$

10399
10400REM \quad **** Decomposition loop of triangonal matrix ${ }^{* * *}$
10409
10450 For I $\%=2$ To N $\%$
$10460 \quad \operatorname{sig}=(x(\mathrm{I} \%)-\mathrm{x}(\mathrm{I} \%-1)) /(\mathrm{x}(\mathrm{I} \%+1)-\mathrm{x}(\mathrm{I} \%-1))$
$10470 \quad \mathrm{p}=\operatorname{sig} * \operatorname{knots}(\mathrm{I} \%-1)+2$
10480 knots $(\mathrm{I} \%)=(\mathrm{sig}-1) / \mathrm{p}$
10489
$10490 \quad \mathrm{U}(\mathrm{I} \%)=(\mathrm{y}(\mathrm{I} \%+1)-\mathrm{y}(\mathrm{I} \%)) /(\mathrm{xI} \%+1)-\mathrm{x}(\mathrm{I} \%))$
$10500 \mathrm{U}(\mathrm{I} \%)=\mathrm{U}(\mathrm{I} \%)-(\mathrm{y}(\mathrm{I} \%)-\mathrm{y}(\mathrm{I} \%-1)) /(\mathrm{x}(\mathrm{I} \%)-\mathrm{x}(\mathrm{I} \%-1))$
$10510 \mathrm{U}(\mathrm{I} \%)=(6 * \mathrm{U}(\mathrm{I} \%) /(\mathrm{xI} \%+1)-\mathrm{x}(\mathrm{I} \%-1))-\operatorname{sig} * \mathrm{U}(\mathrm{I} \%-1)) / \mathrm{p}$
10520NEXT I \%
10549
10550REM ${ }^{* * * *}$ Set higher end point condition $* * * *$
10559
10560REM Set condition to be a natural spline
10569
10570 If dydxn $>1 \mathrm{E} 25$ Qn $=0$
10580 If dynxn >1 E25 Un $=0$
10589
10590REM Set to specified first derivative
10599
10600 If dydxn < 1E25
$\mathrm{Qn}=-0.5$
$\mathrm{Un}=(3 /(\mathrm{xN} \%)-\mathrm{x}(\mathrm{N} \%-1))$
$\left.\mathrm{Un}-\mathrm{Un} \mathrm{N}^{*}(\operatorname{dydxn}-(\mathrm{y}(\mathrm{N} \%)-\bar{y}(\mathrm{~N} \%-1)) /(\mathrm{x} \mathrm{N} \%)-\mathrm{x}(\mathrm{N} \%-1))\right)$
10610 If dydxn < 1E25
10620 If dydxn < 1E25
10629
10630 knots $(\mathrm{N} \%)=(\mathrm{Un}-\mathrm{Qn} * \mathrm{U}(\mathrm{N} \%-1)) /(\mathrm{Qn} * \operatorname{knots}(\mathrm{~N} \%-1)+1)$
10639
10650REM **** Backsubstitution loop of tridiagonal algorithm $* * * *$
10659
10660 For $\mathrm{I} \%=\mathrm{N} \%-1$ TO 1 STEP - 1
10670 knots $(\mathrm{I} \%)=$ knots (I\%) $*$ knots $(\mathrm{I} \%+1)+\mathrm{U}(\mathrm{I} \%)$
10680 NEXT I\%
10689
10690 RETURN
10699
11000REM Subroutine Function spline
11010
11050REM Given two arrays $x()$ and $y()$ and a value of x
11060REM this procedure calculates a cubic-spline interpolated
11070REM value y
11099
11100REM **** Arguments
11109
11110REM Global $x() \quad x$ values
1120REM $y() \quad y$ values
1130REM knots () second derivatives of the
1140REM interpolating function
11199
11200REM N\% number of points
11210 REM $X \quad x$ values for which calculated y value
11220 REM is required
11230REM Local Y Calculated y value, interpolated using
11240REM cubic spine
11250REM a,b,h working variables
11260REM low,high
11299
11300REM $\quad * * * *$ Find the appropriate spline using $\quad * * * *$
11310REM **** a bisection routine $* * * *$
11319
11350 low = 1
11360 high $=\mathrm{N} \%$
$11370 \mathrm{~K} \%=($ high + low $) / 2$
11380 If $(x(K \%)>X)$ high $=K \%$ ELSE low $=K \%$

A2.2 Using IBM (GW Basic Compatible)

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM
9 REM
10 REM ONERROR:REPORT:END
11 REM
90 GOSUB 1000 :REM initialise variables
99 REM
100 FOR TT $\%=0$ TO 1
110 GOSUB 2000 :REM inputdata
120 GOSUB 1500 :REM Test spline against existing routines
186 NEXT
900 END
999 REM
1000 REM Subroutine to initialise variables
1010 REM
1100 DIM X(40),Y(40),KNOTS(40),(U)(40)
1110 DIM UNKNOWNX(40),OLDCALC(40)
1490 RETURN
1499 REM
1500 REM Subroutine to test spline against existing program
1509 REM
1519 REM :REM
1520 TIME $=0:$ DYDX $1=1 \mathrm{E}+26:$ DYDXN $=1 \mathrm{E}+26:$ GOSUB $10000:$ T $\%=$ TIME
1530 PRINT"Time taken to calculate 2nd order derivatives = "T $\% / 100$;" secs." '
1540 TIME = 0: FOR I $\%=1$ TO M $\%:$ X = UNKNOWNX(I \%) :GOSUB $11000:$ NEXT:T $\%=$ TIME
1550 PRINT"Time taken to calculate interpolated value $=" \mathrm{~T} \% /(100 * \mathrm{M} \%){ }^{\prime \prime}$ secs"
1559 REM
1560 PRINT' ' " Retention Calculated indices"
1570 PRINT" time/min new old"' '
1600 FOR J $\%=1$ TO M $\%$
1610 PRINT" ";UNKNOWNX(J\%);" ";
1620 X = UNKNOWNX(J\%):GOSUB 11000:PRINT SPLINE" ";
1630 PRINT OLDCALC(J\%)
1650 NEXT
1990 RETURN
1999 REM
2000 REM Subroutine inputdata
2010 REM
2050 REM Routine to input test data from DATA statements
2099 REM
2100 READ N\% : REM Input number of $x \& y$ values
2105 READ TITLES : REM Input file title
2109 REM
2110 FOR I $\%=1$ TO N $\%$
2120 READ Y(I\%),X(I\%) : REM Input N\% pairs of x, y values
2130 NEXT I \%

```
2149 REM
2150 READ M% : REM Input number of unknown values
2159 REM
2160 FOR I% = 1 TO M%
2170 READ OLDCALC(I%) : REM Input original calculated values
2180 READ UNKNOWNX(I%) : REM Input unknown x values
2190 NEXT I%
2199 REM
2290 RETURN
2299 REM
2500 REM **** Test Data ****
2509 REM
2510 DATA 24,"Non-Polar Column ( }24\mathrm{ standards )"
2519 REM
2520 DATA 700, 4.319
2530 DATA 800, 6.448
2540 DATA 900, }9.62
2550 DATA 1000, 13.455
2560 DATA 1100, 17.439
2570 DATA 1200, 21.340
2580 DATA 1300, 25.062
2590 DATA 1400, 28.578
2600 DATA 1500, 31.897
2610 DATA 1600, 35.049
2620 DATA 1700, 38.037
2630 DATA 1800, }40.89
2640 DATA 1900, 43.640
2650 DATA 2000, 46.283
2660 DATA 2100, 48.828
2670 DATA 2200, 51.288
2680 DATA 2300, 53.659
2690 DATA 2400, 55.937
2700 DATA 2500, 58.123
2710 DATA 2600, 60.220
2720 DATA 2800, 64.149
2730 DATA 3000, 67.823
2740 DATA 3200, 71.298
2750 DATA 3600, 78.863
2799 REM
2800 DATA }
2 8 0 9 ~ R E M
2810 DATA 849, 8.018
2820 DATA 975, 12.709
2830 DATA 1148, 19.378
2840 DATA 1248, 23.167
2850 DATA 1252, 23.306
2860 DATA 1312, 25.477
2870 DATA 1913, 44.021
2880 DATA 2505, 58.228
2 9 9 9 ~ R E M
3010 DATA 20, "Polar Column ( }20\mathrm{ standards )"
3019 REM
3020 DATA 1000, 5.014
3030 DATA 1100, 7.262
3040 DATA 1200, 10.211
3050 DATA 1300, 13.541
3060 DATA 1400, 16.981
3070 DATA 1500, 20.361
3080 DATA 1600, 23.621
3090 DATA 1700, 26.736
3100 DATA 1800, 29.720
3110 DATA 1900, 32.580
3120 DATA 2000, 35.325
3130 DATA 2100, 37.957
```

3140 DATA 2200, 40.493
3150 DATA 2300, 42.936
3160 DATA 2400, 45.298
3170 DATA 2500, 47.595
3180 DATA 2600, 49.825
3190 DATA $2800,54.104$
3200 DATA 3000, 58.143
3210 DATA 3200, 62.658
3219 REM
3300 DATA 6
3309 REM
3310 DATA 1009, 5.174
3320 DATA 1234, 11.339
3330 DATA 1265, 12.378
3340 DATA 1474, 19.473
3350 DATA 2636, 50.480
3360 DATA 3104, 60.591
9999 REM
10000 REM Subroutine to calculate spline
10010 REM
10050 REM
10060 REM
10070 REM
10099 REM
10100 REM
10109 REM

10120 REM
10130 REM
10140 REM
10150 REM
10199 REM
10200 REM
10210 REM
10220 REM
10230 REM
10240 REM
10250 REM
10299 REM
10300 REM
10309 REM
10310 REM
Given two arrays $x()$ and $y()$ this procedure calculates the second derivatives of the interpolating function at the tabulated points $x()$.

```
10110 REM Global \(\quad x() \quad x\) values
                **** Arguments ****
            Global x( ) x values
            y() y values
                        knots( ) Second derivatives of the
                                interpolating function
                    U( ) working array
                    N% number of points
                    dydx1 dy/dx at first point
                        (signals natural spline if > 1E25)
                        dydxn dy/dx at last point
                                (signals natural spline if > 1E25)
                Qn,Un,sig,p working variables
``` Set condition to be a natural spline
10320 IF DYDX1 \(>9.999999 \mathrm{E}+24\) THEN KNOTS \((1)=0\)
10330 IF DYDX1 \(>9.999999 E+24\) THEN U(1) \(=0\)
10339 REM
10340 REM Set to specified first derivative
10349 REM
10350 IF DYDX1 < 9.999999E +24 THEN KNOTS \((1)=-.5\)
10360 IF DYDX1 < \(9.999999 \mathrm{E}+24\) THEN \(\mathrm{U}(1)=(3 /(\mathrm{X}(2)-\mathrm{X}(1)))^{*}((\mathrm{Y}(2)-\mathrm{Y}(1)) /(\mathrm{X}(2)-\mathrm{X}(1))-\mathrm{DYDX}\)
10399 REM
10400 REM \(\quad * * * * \quad\) Decomposition loop of triangonal matrix \(\quad * * * *\)
10409 REM
10450 FOR I \(\%=2\) TO N \(\%\)
\(10460 \quad \mathrm{SIG}=(\mathrm{X}(\mathrm{I} \%)-\mathrm{X}(\mathrm{I} \%-1)) /(\mathrm{X}(\mathrm{I} \%+1)-\mathrm{X}(\mathrm{I} \%-1))\)
\(10470 \quad \mathrm{P}=\operatorname{SIG}^{*} \operatorname{KNOTS}(\mathrm{I} \%-1)+2\)
\(10480 \mathrm{KNOTS}(\mathrm{I} \%)=(\mathrm{SIG}-1) / \mathrm{P}\)
10489 REM
\(10490 \quad \mathrm{U}(\mathrm{I} \%)=(\mathrm{Y}(\mathrm{I} \%+1)-\mathrm{Y}(\mathrm{I} \%)) /(\mathrm{X}(\mathrm{I} \%+1)-\mathrm{X}(\mathrm{I} \%))\)
\(10500 \quad \mathrm{U}(\mathrm{I} \%)=\mathrm{U}(\mathrm{I} \%)-(\mathrm{Y}(\mathrm{I} \%)-\mathrm{Y}(\mathrm{I} \%-1)) /(\mathrm{X}(\mathrm{I} \%)-\mathrm{X}(\mathrm{I} \%-1))\)
\(10510 \quad \mathrm{U}(\mathrm{I} \%)=(6 * \mathrm{U}(\mathrm{I} \%) /(\mathrm{X}(\mathrm{I} \%+1)-\mathrm{X}(\mathrm{I} \%-1))-\mathrm{SIG} * \mathrm{U}(\mathrm{I} \%-1)) / \mathrm{P}\)
10520 NEXT I\%
10549 REM
10550 REM \(\quad * * * *\) Set higher end point condition \(* * * *\)
10570 IF DYDXN \(>9.999999 \mathrm{E}+24\) THEN QN \(=0\)
10580 IF DYDYN > 9.999999E + 24 THEN UN = 0
10589 REM
10590 REM Set to specified first derivative
10599 REM
10600 IF DYDXN \(<9.999999 \mathrm{E}+24\) THEN QN \(=-0.5\)
10610 IF DYDXN < 9.999999E +24 THEN UN \(=(3 /(\mathrm{X}(\mathrm{N} \%)-\mathrm{X}(\mathrm{N} \%-1)))\)
10620 IF DYDXN < 9.999999E +24 THEN UN \(=\mathrm{UN}^{*}(\mathrm{DYDXN}-(\mathrm{Y}(\mathrm{N} \%)-\mathrm{Y}(\mathrm{N} \%-1)) /(\mathrm{X}(\mathrm{N} \%)-\mathrm{X}(\mathrm{N} \%-1)))\)
10629 REM
\(10630 \mathrm{KNOTS}(\mathrm{N} \%)=(\mathrm{UN}-\mathrm{QN} * \mathrm{U}(\mathrm{N} \%-1)) /(\mathrm{QN} * \mathrm{KNOTS}(\mathrm{N} \%-1)+1)\)
10639 REM
10650 REM \(\quad * * * *\) Backsubstitution loop of tridiagonal algorithm ****
10659 REM
10660 FOR I \(\%=\mathrm{N} \%-1\) TO 1 STEP -1
\(10670 \operatorname{KNOTS}(\mathrm{I} \%)=\operatorname{KNOTS}(\mathrm{I} \%){ }^{*} \operatorname{KNOTS}(\mathrm{I} \%+1)+\mathrm{U}(\mathrm{I} \%)\)
10680 NEXT I\%
10689 REM
10690 RETURN
10699 REM
11000 REM Subroutine Function spline
11010 REM
11050 REM
11060 REM
11070 REM
11099 REM
11100 REM
11109 REM
11110 REM Global \(x() \quad x\) values
11120 REM \(y() \quad y\) values
11130 REM
11140 REM
11199 REM
11200 REM \(\quad \mathrm{N} \%\) number of points
11210 REM \(\quad \mathrm{X}\) value for which calculated y value
11220 REM
11230 REM
Local Y Calculate y value, interpolated using
11240 REM
11250 REM
11260 REM
11299 REM
11300 REM **** Find the appropriate spline using
11310 REM \(\quad * * * *\) a bisection routine. - ****
11319 REM
11350 LOW = 1
\(11360 \mathrm{HIGH}=\mathrm{N} \%\)
\(11370 \mathrm{~K} \%=(\mathrm{HIGH}+\mathrm{LOW}) / 2\)
11380 IF \((\mathrm{X}(\mathrm{K} \%)>\mathrm{X})\) THEN HIGH \(=\mathrm{K} \%\) ELSE LOW \(=\mathrm{K} \%\)
11390 IF (HIGH - LOW) \(>=2\) GOTO 11370
11399 REM
11400 REM **** Interpolate using cubic between 'low' and 'high'
11409 REM
\(11410 \mathrm{H}=\mathrm{X}(\mathrm{HIGH})-\mathrm{X}(\mathrm{LOW})\)
\(11450 \mathrm{~A}=(\mathrm{X}(\mathrm{HIGH})-\mathrm{X}) / \mathrm{H}\)
\(11460 \mathrm{~B}=(\mathrm{X}-\mathrm{X}(\mathrm{LOW})) / \mathrm{H}\)
\(11470 \mathrm{Y}=\mathrm{A}^{*} \mathrm{Y}(\mathrm{LOW})+\mathrm{B}^{*} \mathrm{Y}(\mathrm{HIGH})\)
11480 SPLINE \(=\mathrm{Y}+\left(\left(\mathrm{A}^{\wedge} 3-\mathrm{A}\right)^{*} \mathrm{KNOTS}(\mathrm{LOW})+\left(\mathrm{B}^{\wedge} 3-\mathrm{B}\right)^{*} \mathrm{KNOTS}(\mathrm{HIGH})\right)^{*} \mathrm{H}^{\wedge} 2 / 6\)
11490 RETURN
¢
\begin{tabular}{|c|c|c|c|c|}
\hline Retention time/min & Calculated by A. 2 & Indices by A. 1 & A.2-A. 1 & Calculated using the Van den Dool and Katz equation* \\
\hline 8.018 & 855.0 & 849.0 & 6.0 & 849.4 \\
\hline 12.709 & 980.9 & 975.0 & 5.9 & 980.5 \\
\hline 19.378 & 1149.2 & 1148.0 & 1.2 & 1149.7 \\
\hline 23.167 & 1248.4 & 1248.0 & 0.4 & 1249.1 \\
\hline 23.306 & 1252.2 & 1252.0 & 0.2 & 1252.8 \\
\hline 25.477 & 1311.5 & 1312.0 & -0.5 & 1311.8 \\
\hline 44.021 & 1914.2 & 1913.0 & 1.2 & 1914.4 \\
\hline 58.228 & 2504.9 & 2505.0 & -0.1 & 2505.0 \\
\hline
\end{tabular}
(ii) Polar Column with 20 standards and 6 unknown samples (as in 5.1.3).
\(\left.\begin{array}{lllll}\begin{array}{l}\text { Retention } \\
\text { time/min }\end{array} & \begin{array}{l}\text { Calculated } \\
\text { by A.2 }\end{array} & \begin{array}{l}\text { Indices } \\
\text { by A.1 }\end{array} & \text { A.2-A.1 } & \begin{array}{l}\text { Calculated } \\
\text { using the } \\
\text { Van den Dool } \\
\text { and Katz }\end{array} \\
\text { equation* }\end{array}\right]\)\begin{tabular}{cccc}
& & 1009.0 & -1.5 \\
\hline 5.174 & 1007.5 & 1234.0 & -0.3 \\
11.339 & 1234.3 & 1265.0 & 0.5 \\
12.378 & 1265.5 & 1474.0 & -0.6 \\
19.473 & 1473.4 & 2636.0 & -6.3
\end{tabular}

Note if manual plotting were used using a calibrated spline (as in Section 5.1), the indices obtained would not be as accurate and would be partly dependent on the degree of time scale enlargement obtainable from the recorder.
* Calculated by British Gas plc London Research Station
'A2.3 Note M Tech Computer Services (4 Church Hill, Reepham Norfolk, 0603, 870620) have an inexpensive computer programme available for translating BBC Basic to IBM compatible MSDGS (IBM information).

\section*{References}
(1) Grob, K, Grob, G, Blum, W and Walther, W. Preparation of inert glass capillary columns for gas chromatography. A revised comprehensive description. J. Chromatogr., 244, 197-208, 1982 and references cited therein.
(2) Grob, K, Jr, Grob, G and Grob, K. Preparation of apolar glass capillary columns by the barium carbonate procedure. J. High Resolution Chromatogr. and Chromatogr. Commun. 1, 149-155, 1978, and references cited therein.
(3) Department of the Environment Contract Report PECD7/7/118-4/84.
(4) Kovats, E Helv. Chim. Acta, 41, 1915, 1958.
(5) Van Den Dool, H and Kratz, P D J. Chromatogr., 11, 463, 1963.
(6) Knoppel, H, De-Bortoli, M, Peil, A, Schauenburg, H and Vissers, H Analysis of Organic Micropollutants in Water. Proceedings of the Second European Symposium, Killarney (Ireland), Nov. 17-19, 1981, 133.
(7) Ramsey, J D and Lee, T D J. Chromatogr., 184, 185, 1980.
(8) Halang, W A, Langlais, R and Kugler, E Anal. Chem., 50, 1829, 1978.
(9) Forsythe, G E K Siam, 5, 74, 1957.
(10) Clenshaw, C W Computer J., 2, 170, 1960.
(11) Gentleman, W M Computer J., 12, 160, 1969.
(12) Chlorophenoxy acidic Herbicides etc in Water 1985. HMSO in this series. Methods A and B.
(13) Waggot A, Deal E A, and Davies I W. An Inventory of Linear Temperature Programmed Gas Chromatographic Retention Indices 2nd Edn. WRC. 1987.
(14) Safety Guide for Hydrogen. National Research Council of Canada, Ottawa, Ontario, KIAOR6, Canada.
(15) The Sadtler Capillary G C Standard Retention Index Library Heyden Sadtler, Heyden and Sons Ltd, London
(16) The Eight Peak Index of Mass Sectra 3rd Edn 1983. Royal Society of Chemistry/ University of Nottingham, Nottingham.
(17) The Sadtler Index of Infra Red and Ultra Violet Spectra, Sadtler Philadelphia.
(18) Nakamura, A Tanaka, R and Kashimoto, T. Retention Indexes for Electron Capture Gas Chromatography-Programmed Temperature High Resolution Capillary Columns; J. Assoc. Off Ag. Anal. Chem. 67. 129-132. 1984
(19) Manninen, A, Kuitunen, M-L, and Julin, L, J. Chromatog. 394. 465-471. 1987.
(20) Wright M D, Anal. Proc. 24. 309-311. 1987.
(21) Press W U, Flannery B P, Teukolsky S A, Vetterling W J, Numerical Recipes, Cambridge University Press 1986

\section*{Address for Correspondence}
(See also section 6 above for queries about Index Values).

However thoroughly a procedure may be tested, there is always the possibility of a user discovering a hitherto unknown problem. Users with information on this procedure are requested to write to:

The Secretary
The Standing Committee of Analysts
The Department of the Environment
Romney House
43 Marsham Street
LONDON SW1P 3PY
England

Table 1 Typical Standard Deviations for LTPRI determined with the non polar polydimethylsiloxane PS225 column. (data to nearest whole number, all repeat measurements determined on different columns of the same type).
\begin{tabular}{lllc}
\hline Substance & LTPRI & Standard Deviation* & \begin{tabular}{c}
Degrees of \\
Freedom
\end{tabular} \\
\hline n butanol & 0661 & \(\pm 1\) & 2 \\
Benzene & 0662 & \(\pm 7\) & 12 \\
2 pentanone & 0674 & \(\pm 1\) & 2 \\
1.4 dioxane & 0692 & \(\pm 1\) & 2 \\
1 nitropropane & 0708 & \(\pm 1\) & 2 \\
2 methyl 2 pentanol & 0723 & \(\pm 1\) & 2 \\
Pyridine & 0732 & \(\pm 6\) & 1 \\
l.iodobutane & 0797 & \(\pm 1\) & 2 \\
2 octyne & 0869 & - & 2 \\
Hydrindane & 0976 & \(\pm 2\) & 12 \\
Octanol & 1056 & \(\pm 0.4\) & 4 \\
2.6 dimethylphenol & 1079 & \(\pm 1\) & 4 \\
2 ethylhexanoic acid & 1117 & \(\pm 1\) & 3 \\
2.6 dimethyl aniline & 1130 & \(\pm 0.5\) & 4 \\
Naphthalene & 1155 & \(\pm 2\) & 9 \\
Methyl decanoate & 1308 & \(\pm 1\) & 4 \\
Dicyclohexylamine & 1400 & - & 1 \\
Methyl undecanoate & 1408 & \(\pm 1\) & 4 \\
Methyl dodecanoate & 1508 & \(\pm 1\) & 4 \\
Diethylphthalate & 1548 & \(\pm 1\) & 9 \\
Pristane & 1710 & \(\pm 1\) & 9 \\
Pyrene & 2059 & \(\pm 6\) & 9 \\
Di(2-ethylhexyl) phthalate & 2504 & \(\pm 1\) & 9 \\
Perylene & 2811 & \(\pm 11\) & 9 \\
Cholesterol & 3091 & \(\pm 7\) & 9 \\
\hline & & & \\
\hline
\end{tabular}
*based on the percentage section of the LTPRI (also Tables 2 and 3)

Table 2 Typical Standard Deviations for LTPRI determined with the polar polyethyleneglycol Carbowax 20 M column
\begin{tabular}{llll}
\hline Substance & LTPRI & Standard Deviation* & \begin{tabular}{l}
Degrees of \\
Freedom
\end{tabular} \\
\hline 0-Xylene & 1181 & \(\pm 4\) & 7 \\
Anisole & 1331 & \(\pm 4\) & 7 \\
Furfural & 1447 & \(\pm 5\) & 7 \\
Pristane & 1674 & \(\pm 4\) & 7 \\
Naphthalene & 1710 & \(\pm 4\) & 7 \\
B-Ionone & 1910 & \(\pm 6\) & 7 \\
Acenapthene & 2092 & \(\pm 6\) & 7 \\
Diethyl phthalate & 2335 & \(\pm 6\) & 7 \\
\hline
\end{tabular}

Table 3 Typical Standard Deviations for LTPRI determined with a polar Superox 0.6 column
\begin{tabular}{llll}
\hline Substance & LTPRI & Standard Deviation* & \begin{tabular}{l}
Degrees of \\
Freedom
\end{tabular} \\
\hline o-Xylene & 1173 & \(\pm 2\) & 3 \\
Anisole & 1324 & \(\pm 2\) & 3 \\
Furfural & 1431 & \(\pm 2\) & 3 \\
Pristane & 1667 & \(\pm 2\) & 3 \\
Naphthalene & 1706 & \(\pm 2\) & 3 \\
B-Ionone & 1909 & \(\pm 1\) & 3 \\
Acenapthene & 2092 & \(\pm 2\) & 3 \\
Diethyl phthalate & 2316 & \(\pm 2\) & 3 \\
\hline
\end{tabular}

Table 4 Linear Temperature Programmed Retention Indices Truncated Version in Retention Index Order-Methyl Silicone Columns
\begin{tabular}{lll}
\hline Retention & Compound name & Stationary \\
index & & phase \\
\hline 0661 & butanol, 1- & OV-1 \\
0669 & benzene & OV-1 \\
0674 & pentanone, 2- & OV-1 \\
0692 & dioxane, 1, 4- & OV-1 \\
0707 & propane, 1-nitro & OV-1 \\
0723 & pentanol, 2-methyl-2- & OV-1 \\
0732 & pyridine & OV-1 \\
0768 & methane, dibromochloro & OV-1 \\
0797 & butane, 1-iodo & OV-1 \\
0827 & benzene, chloro & OV-1 \\
0832 & picoline, beta (3-methylpyridine) & OV-1 \\
0832 & picoline, gamma (4-methylpyridine) & OV-1 \\
0846 & benzene, ethyl & OV-1 \\
0852 & methane, tribromo & OV-1 \\
0860 & methane, bis-(methylthio) & OV-1 \\
0869 & disulphide, ethylmethyl & OV-1 \\
0869 & disulphide, ethylmethyl & OV-1 \\
0876 & ethane, 1, 1, 2, 2-tetrachloro & OV-1 \\
0923 & heptanone, 5-methyl-3- & OV-1 \\
0931 & toluene, 2-chloro & OV-1 \\
0932 & toluene, 3-chloro & OV-1 \\
0936 & toluene, 4-chloro & OV-1 \\
0959 & phenol & OV-1 \\
0962 & hepten-2-one, 6-methyl-5- & OV-1 \\
0965 & phenol, 2-chloro & OV-1 \\
0975 & hydrindane, cis- (hexahydroindane) & OV-1 \\
0981 & benzene, 1, 3-dichloro & OV-1 \\
0983 & toluene, alpha-chloro (benzyl chloride) & OV-1 \\
0985 & benzene, 1, 4-dichloro & OV-1 \\
1007 & benzene, 1, 2-dichloro & OV-1 \\
1046 & benzene, nitro & OV-1 \\
1051 & triazine, 2, 4, 6-trichloro-1, 3, 5- (cyanuric chloride) & OV-1 \\
1055 & ethane, hexachloro & OV-1 \\
1056 & octanol, 1- & OV-1 \\
1076 & pyrazine, 2-isopropyl-3-methoxy & OV-1 \\
1079 & phenol, 2, 6-dimethyl & OV-1 \\
1094 & aniline, 2-chloro & OV-1 \\
1106 & toluene, alpha, alpha-dichloro (benzal chloride) & OV-1 \\
1177 & hexanoic acid, 2-ethyl & OV-1 \\
1125 & phenol, 2, 4-dimethyl (m-xylenol) & phenol, 2, 5-dimethyl (2, 5-xylenol) \\
\hline & & OV-1 \\
\hline & & OV \\
\hline
\end{tabular}
1130 aniline, 2, 6-dimethyl OV-1
1140 phenol, 2, 4-dichloro OV-1
1150 benzene, 1, 2, 4-trichloro OV-1

1155 naphthalene OV-1
1156 naphthalene OV-1
1158 aniline, 3-chloro OV-1
1160 pyrazine, 2-isobutyl-3-methoxy OV-1
1161 aniline, 4-chloro OV-1
1161 thianaphthene OV-1
1164 borneol, 2-methyliso OV-1
1167 phenol, 3, 4-dimethyl (3, 4-xylenol) OV-1
1171 phenol, 4-chloro OV-1
1173 phenol, 3-chloro OV-1
1182 toluidine, 3-chloro-o- OV-1
1185 benzene, 1-chloro-3-nitro OV-1
1193 benzene, 1-chloro-4-nitro OV-1
1195 aniline, 2-chloro-4-methyl OV-1
1199 benzene, 1-chloro-2-nitro OV-1
1201 toluidine, 6 -chloro-m- OV-1
1202 benzene, hexachloro (HCB) OV-1
1202 butadiene, hexachloro OV-1
1204 aniline, 2, 6-dichloro OV-1
1249 toluidine, 6 -chloro-o- OV-1
1252 toluidine, 2-chloro-p- OV-1
1253 aniline, 2-chloro-4-methyl OV-1
1256 toluidine, 4-chloro-o- OV-1
1256 toluidine, 5 -chloro-o- OV-1
1259 toluene, 6-chloro-2-nitro OV-1
1260 phenol, 4-chloro-3-methyl OV-1
1268
toluene, 4-chloro-2-nitro OV-1
1287
aniline, 2, 4-dichloro
OV-1
1288
aniline, 2, 5 -dichloro
OV-1
1288 benzene, 3, 5 -dichloronitro OV-1
1290 benzonitrile, 2, 6-dichloro (dichlobenil) OV-1
1301 benzene, 1, 2, 4, 5-tetrachloro OV-1
1302 anisole, 2, 4, 6-trichloro OV-1
1304 phenol, 2, 3, 5-trichloro OV-1
1306 aniline, 2, 3-dichloro OV-1
1308 decanoic acid, methyl ester OV-1
1312 toluene, 4-chloro-3-nitro OV-1
1315 benzene, 2, 5 -dichloronitro OV-1
1316 toluene, 2-chloro-4-nitro OV-1
1318 cyclopentadiene, hexachloro OV-1
1322 benzene, 2, 4-dichloronitro OV-1
1327 phenol, 2, 4, 5-trichloro OV-1
1332
1339
1341
1344
phenol, 2, 3, 4-trichloro
OV-1

1352
1377
benzene, 3, 4-dichloronitro
OV-1
anisole, 2, 3, 6-trichloro OV-1
benzene, 2, 3-dichloronitro OV-1
phenol, 2, 3, 6-trichloro OV-1
naphthalene, 1-chloro OV-1
naphthalene, 2-chloro OV-1
aniline, 3, 5-dichloro OV-1
aniline, 3, 4-dichloro OV-1
decalol, trans-1, 10 -dimethyl-trans-9- (geosmin) OV-1
toluene, 2, 6-dinitro \(\mathrm{OV}-1\)
1400 dicyclohexylamine OV-1
1408 undecanoic acid, methyl ester OV-1
1412 acenaphthylene OV-1
1415
phenol, 2-amino-4-chloro
1435 phenol, 2, 4-dinitro OV-1
\begin{tabular}{lll}
1435 & phenol, 2, 4-dinitro & OV-1 \\
1465 & anisole, 2, 3, 4-trichloro & OV-1 \\
1468 & toluene, 2, 4-dinitro & OV-1 \\
1490 & benzene, 1-chloro-2, 4-dinitro & OV-1 \\
1494 & anisole, 2, 3, 5, 6-tetrachloro & OV-1 \\
1494 & anisole, 2, 4, 5-trichloro & OV-1 \\
1507 & dodecanoic acid, methyl ester & OV-1 \\
1538 & aniline, 4-chloro-2-nitro & OV-1 \\
1548 & phthalic acid, diethyl ester & OV-1 \\
1575 & \begin{tabular}{ll}
aniline, N-phenyl
\end{tabular} & OV-1 \\
1588 & \begin{tabular}{ll}
acetic acid, methyl ester, 2, 4-dichlorophenoxy (2, 4-D \\
methyl ester)
\end{tabular} & \\
1588 & \begin{tabular}{l}
hydrazine, 1, 2-diphenyl
\end{tabular} & OV-1 \\
1589 & \begin{tabular}{l}
phenol, 3, 4, 5-trichloro \\
indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, \\
1610
\end{tabular} & 7a-hexahydro-4, 7-methano-1H- (chlordane)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1435 & phenol, 2, 4-dinitro & OV-1 \\
\hline 1465 & anisole, 2, 3, 4-trichloro & OV-1 \\
\hline 1468 & toluene, 2, 4-dinitro & OV-1 \\
\hline 1490 & benzene, 1-chloro-2, 4-dinitro & OV-1 \\
\hline 1494 & anisole, 2, 3, 5, 6-tetrachloro & OV-1 \\
\hline 1494 & anisole, 2, 4, 5-trichloro & OV-1 \\
\hline 1507 & dodecanoic acid, methyl ester & OV-1 \\
\hline 1538 & aniline, 4-chloro-2-nitro & OV-1 \\
\hline 1548 & phthalic acid, diethyl ester & OV-1 \\
\hline 1575 & aniline, N -phenyl & OV-1 \\
\hline 1588 & acetic acid, methyl ester, 2, 4-dichlorophenoxy (2, 4-D methyl ester) & OV-1 \\
\hline 1588 & hydrazine, 1, 2-diphenyl & OV-1 \\
\hline 1589 & phenol, 3, 4, 5-trichloro & OV-1 \\
\hline 1610 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane) & OV-1 \\
\hline 1614 & phosphoric acid, tributyl ester & OV-1 \\
\hline 1645 & cyclohexane, alpha-hexachloro (alpha-BHC) & OV-1 \\
\hline 1645 & cyclohexane, hexachloro (BHC) & OV-1 \\
\hline 1652 & ether, 4-bromophenyl phenyl & OV-1 \\
\hline 1660 & toluidine, alpha, alpha, alpha-trifluoro-2, 6-dinitro-N, N -dipropyl-p- (trifluralin) & OV-1 \\
\hline 1672 & cyclohexane, beta-hexachloro (beta-BHC) & OV-1 \\
\hline 1680 & benzene, hexachloro (HCB) & OV-1 \\
\hline 1689 & anisole, pentachloro & OV-1 \\
\hline 1699 & triazine-2, 4-diamine, 2 -chloro-N-ethyl- \({ }^{\prime}\)-(1-methylethyl)-1, 3, 5-(atrazine) & OV-1 \\
\hline 1704 & cyclohexane, gamma-hexachloro (gamma-BHC, lindane) & OV-1 \\
\hline 1709 & pentadecane, 2, 6, 10, 14-tetramethyl (pristane) & OV-1 \\
\hline 1713 & triazine-2, 4-diamine, 6 -chloro-N, \(\mathrm{N}^{\prime}\)-bis (1-methylethyl)-1, 3, 5- (propazine) & OV-1 \\
\hline 1715 & phenol, pentachloro & OV-1 \\
\hline 1721 & benzene, n-butyl, sulphonamide & OV-1 \\
\hline 1752 & anthracene & OV-1 \\
\hline 1766 & phosphorothioic acid, OO-diethyl & \\
\hline & O-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester & \\
\hline
\end{tabular}
1490 benzene, 1-chloro-2, 4-dinitro OV-1
1494 anisole, 2, 3, 5, 6-tetrachloro OV-1
朝
phenol, 2-sec-butyl-4, 6-dinitro (dinoseb) OV-1
propionanilide, \(3^{\prime}\), \(4^{\prime}\)-dichloro (propanil) OV-1indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7,7a-hexahydro-4, 7 -methano-1H- (chlordane)OV-1
acetic acid, butyl ester, 2, 4-dichlorophenoxy (2, 4-D butyl ester) OV-1indene, \(1,4,5,6,7,8,8\)-heptachloro-3a, 4, 7,7a-tetrahydro-4, 7-methano-1H- (heptachlor)OV-1
indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7 -methano-1H- (chlordane) OV-1
urea, 3-(3, 4-dichlorophenyl)-1-methyoxy-1-methyl (linuron) OV-1
parathion oxygen analog OV-1phosphorodithioic acid, OO-dimethyl S-1,2-dicarbethoxyethyl ester (malathion)OV-1
indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7 -methano-1H (chlordane) OV-1indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7,7a-hexahydro-4, 7-methano-1H- (chlordane)OV-1phosphorothioic acid, OO-diethyl O-4-nitrophenyl ester(parathion)OV-1naphthalene, \(1,2,3,4,10,10\)-hexachloro-1, 4, 4, 5, 8 ,8 -hexahydro-exo-1, 4 -endo-5, 8-dimethano (aldrin)OV-1indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7,7a-hexahydro-4, 7-methano-1H- (chlordane)OV-1
indane, \(1,4,5,6,7,8\), 8-heptachloro-2, 3-ероху-3a, 4, 7, 7a-tetrahydro-4, 7 -methano-1H- (heptachlor epoxide)

OV-1
indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1

benzidine
indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1
pyrene
OV-1
indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1
ethene, 1, 1-dichloro-2- (2-chlorophenyl)-2-(4-chlorophenyl) (\(0, \mathrm{p}^{\prime}\)-DDE)

OV-1
indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1
benzodioxathiepin 3-oxide, \(6,7,8,9,10,10\)-hexachloro 1 , 5,5a, 6,9, 9a-hexahydro-6,9-methano-2, 4, 3- (endosulfan I)OV-1 norbornene-2, 3 -dimethanol, 1, 4, 5, 6, 7, 7-hexachloro, cyclic sulphite, 5- (endosulphan)

OV-1
indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1
indene, 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1
naphthalene, 1, 2, 3, 4, 10, 10-hexachloro-6, 7-epoxy-1, 4, 4a, 5, 6, 7, 8, 8a-octahydro-exo-1, 4:5, 8-dimethano (dieldrin)

OV-1
ethane, 1, 1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (o, \(\mathrm{p}^{\prime}\)-TDE)
\(\mathrm{OV}-1\)
ethane, 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1, 1-dichloro (\(2,4^{\prime}\) DDD)

OV-1
acetic acid, iso-octyl ester, 2, 4-dichlorophenoxy (2, 4-D isooctyl ester)

OV-1
benzodioxathiepin 3 -oxide, \(6,7,8,9,10,10\)-hexachloro 1 ,
5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 4, 3-
(endosulfan II)
OV-1
ethane, 1, 1-dichloro-2, 2-bischlorophenyl (TDE) OV-1
ethane, 1, 1, 1-trichloro-2, 2-bis (chlorophenyl) (DDT) OV-1
indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1
indene, \(1,2,4,5,6,7,8,8\)-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane)

OV-1
phthalic acid, butyl benzyl ester OV-1
ethane, 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) (\(\mathrm{p}, \mathrm{p}^{\prime}\)-DDT)

OV-1
acetic acid, 4-chloro-2-methylphenoxy (MCPA) OV-1
diazepam
OV-1
phosphorodithioic acid, O, O-dimethyl S-I(4-oxo-1, 2,
3-benzotriazin-3 (4H)-yl) methyl] ester (azinphos-methyl) OV-1
phthalic acid, di (2-ethylhexyl) ester
OV-1
phthalic acid, di (2-ethylhexyl) ester
OV-1
phthalic acid, di (2-ethylhexyl) ester OV-1
phthalic acid, dioctyl ester OV-1
phosphorodithioic acid, O, O-diethyl S-[(4-oxo-1, 2, 3-benzotriazin-3 (4H)-yl) methyl] ester (azinphos-ethyl) OV-1
phosphorothioic acid, \(\mathrm{O}, \mathrm{O}\)-diethyl O- (3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl) ester (coumaphos)

OV-1
cyclopropanecarboxylic acid, 3-(2, 2-dichlorovinyl)-2, 2-dimethyl-, (3-phenoxyphenyl) methyl ester (permethrin) OV-1
benzacridine, dimethyl
OV-1
perylene
OV-1
cholesterol
OV-1

Table 5 Linear Temperature Programmed Retention Indices Full Version in Alphabetical Order of Compound Name-Methyl Silicone Columns
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
\hline Index & Origin & Phase & Material & & (mm) & (m) & Gas & Type & Ref \\
\hline
\end{tabular}
acenaphthylene
cas no. 208-96-8
1412 SAC OV-1 \(\quad\) quartz glass \(\begin{array}{lllllll} & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
acetic acid, 4-chloro-2-methylphenoxy (MCPA)
cas no. 94-74-6
2410 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
acetic acid, butyl ester, 2,4-dichlorophenoxy (2,4-D butyl ester)
cas no. 94-80-4
1841 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
acetic acid, iso-octyl ester, 2,4-dichlorophenoxy (2,4-D iso-octyl ester)
cas no. 25168-26-7
2163 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{llll} & \text { standard } & 28\end{array}\)
acetic acid, methyl ester, 2,4-dichlorophenoxy (2,4-D methyl ester)
cas no. 1928-38-7
1588 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
aniline, 2,3-dichloro
cas no. 608-27-5
1306 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
aniline, 2,4-dichloro
cas no. 554-00-7
1287 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
aniline, 2,5-dichloro
cas no. 95-82-9
1288 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
aniline, 2,6-dichloro
cas no. 608-31-1
1204 SAC OV-1 quartz glass . bonded phase 0.3250 hydrogen \(\begin{array}{ll}\text { standard } & 28\end{array}\)
aniline, 2,6-dimethyl
cas no. 87-62-7
1130 SAC OV-1 quartz glass bonded phase \(\begin{array}{lllllll} & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
aniline, 2-chloro
cas no. 95-51-2
1094 SAC OV-
aniline, 2 -chloro-4-methyl
cas no. 615-65-6
\begin{tabular}{llllllllll}
1195 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
aniline, 3,4-dichloro
cas no. 95-76-1
1377 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
aniline, 3,5-dichloro
cas no. 626-43-7
1352 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
aniline, 3-chloro
cas no. 108-42-9
1158 SAC OV-1 \(\quad\) quartz glass \(\begin{array}{lllllll} & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
aniline, 4-chloro
cas no. 106-47-8
1161 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
aniline, 4-chloro-2-nitro cas no. 89-63-4

1538 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
aniline, N -phenyl
cas no. 122-39-4
1575 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
anisole, 2,3,4-trichloro
cas no. 54135-80-7
1465 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \begin{tabular}{lllll}
& standard & 28
\end{tabular}
\begin{tabular}{llllllllll}
LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref
\end{tabular}
anisole, 2,3,5,6-tetrachloro
cas no. 6936-40-9 1494 SAC OV-1 anisole, 2,3,6-trichloro cas no. 50375-10-5 1341 SAC OV-1
anisole, 2,4,5-trichloro cas no. 6130-75-2 1494 SAC OV-1
anisole, 2,4,6-trichloro cas no. 87-40-1 1302 SAC OV-1
anisole, pentachloro
cas no. 1825-21-4 1689 SAC OV-1
anthracene
cas no. 120-12-7 1752 SAC OV-1
benzacridine, dimethyl
cas no. 2381-40-0 2676 SAC OV-1
benzene
cas no. 71-43-2
0669 SAC OV-1
benzene, 1,2,4,5-tetrachloro cas no. 95-94-3 1301 SAC OV-1
benzene, 1,2,4-trichloro cas no. 120-82-1 1150 SAC OV-1
benzene, 1,2-dichloro cas no. 95-50-1 1007 SAC OV-1
benzene, 1,3-dichloro cas no. 541-73-1 0981 SAC OV-1
benzene, 1,4-dichloro cas no. 106-46-7 0985 SAC OV-1
benzene, 1-chloro-2,4-dinitro
cas no. 121-86-8 1490 SAC OV-1
benzene, 1-chloro-2-nitro cas no. 89-21-4 1199 SAC OV-1
benzene, 1-chloro-3-nitro cas no. 88-73-3 1185 SAC OV-1
benzene, 1-chloro-4-nitro cas no. 121-73-3 1193 SAC OV-1
benzene, 2,3-dichloronitro cas no. 3209-22-1 1344 SAC OV-1 benzene, 2,4-dichloronitro cas no. 611-06-3

1322 SAC OV-1
benzene, 2,5-dichloronitro cas no. 89-61-2
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
\(\begin{array}{lllllll}\text { quartz glass bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
\(\begin{array}{lllllll}\text { quartz glass bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
\(\begin{array}{lllllll}\text { quartz glass bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\)
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
\(\begin{array}{llllll}\text { quartz glass bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\)
\(\begin{array}{lllllll}\text { quartz glass bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
\(\begin{array}{llllll}\text { quartz glass bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\)
\(\begin{array}{lllllll}\text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\quad\) standard 28
\begin{tabular}{llllllllll}
LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref
\end{tabular}
benzene, 3,4-dichloronitro
cas no. 99-54-7 1339 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
benzene, 3,5-dichloronitro
cas no. 618-62-2 1288 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & 0.3 & \text { standard } & 28\end{array}\)
benzene, chloro
cas no. 108-90-7 0827 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
benzene, ethyl
cas no. 100-41-4
0846 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
benzene, hexachloro (HCB)
cas no. 118-74-1
\begin{tabular}{llllllllll}
1202 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
1680 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
benzene, n-butyl, sulphonamide
cas no. 3622-84-2
1721 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.3 & \text { standard } & 28\end{array}\)
benzene, nitro
cas no. 98-95-3
1046 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
benzidine
cas no. 92-87-5
2042 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
benzodioxathiepin 3-oxide, 6,7,8,9,10,10-hexachloro 1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3- (endosulfan I) cas no. 959-98-8

2056 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
benzodioxathiepin 3-oxide, 6,7,8,9,10,10-hexachloro 1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3- (endosulfan II) cas no. 33213-65-9

2183 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
benzonitrile, 2,6 -dichloro (dichlobenil)
cas no. 1194-65-6
1290 SAC OV-1 quartz glass bonded phase 0.32 50 \(\quad\) hydrogen \(\begin{array}{llllll}\text { standard } & 28\end{array}\)
biphenyl
cas no. 92-52-4
1348 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
borneol, 2-methyliso
cas no. 2371-42-8
1164 SAC OV-1 quartz glass bonded phase 0.32 50 \(\quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
butadiene, hexacloro
cas no. 87-68-3
1202 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
butane, 1-iodo
cas no. 542-69-8
079 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
butanol, 1-
cas no. 71-36-3
066 SAC OV-1 quartz glass bonded phase 0.32 50 hydrogen standard 28
cholesterol
cas no. 57-88-5
3093 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
cyclohexane, alpha-hexachloro (alpha-BHC)
cas no. 319-84-6
1645 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
cyclohexane, beta-hexacloro (beta-BHC)
cas no. 319-85-7
1672 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
cyclohexane, gamma-hexachloro (gamma-BHC, lindane)
cas no. 58-89-9
1704 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
\begin{tabular}{llllllllll}
LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref \\
\hline
\end{tabular}
cyclohexane, hexachloro (BHC) cas no. 608-73-1 1645 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & & \text { standard } & 28\end{array}\)
cyclopentadiene, hexachloro
cas no. 77-47-4
1318 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
cyclopropanecarboxylic acid, 3-(2,2-dichlorovinyl)-2,2-dimethyl-, (3-phenoxyphenyl)methyl ester (permethrin)
cas no. 52645-53-1
2657 SAC OV-1 quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllllll}\text { standard } & 28\end{array}\)
decalol, trans-1,10-dimethyl-trans-9- (geosmin)
cas no. 19700-21-1
1384 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
decanoic acid, methyl ester
cas no. 110-42-9 1308 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.3\end{array}\)
diazepam
cas no. 52357-79-6 2419 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
dicyclohexylamine
cas no. 101-83-7
1400 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll}\text { standard } & 28\end{array}\)
dioxane, 1,4-
cas no. 123-91-1 0692 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
disulphide, ethylmethyl
cas no. 2033-39-5 0869 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
dodecanoic acid, methyl ester cas no. 111-82-0 1507 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.3\end{array}\)
ethane, 1,1,1-trichloro-2,2-bis(4-chlorophenyl) (p, \(\mathrm{p}^{\prime}\)-DDT)
cas no. 50-29-3
2300 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
ethane, 1,1,1-trichloro-2,2-bis(chlorophenyl) (DDT)
cas no. 50-29-3
2232 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
ethane, 1,1,2,2-tetrachloro
cas no. 79-34-5
0876 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
ethane, 1,1-dichloro-2,2-bischlorophenyl (TDE)
cas no. 72-54-8
2213 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
ethane, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (\(\mathrm{o}, \mathrm{p}^{\prime}\)-TDE) cas no. 53-19-0

2146 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
ethane, 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloro (2,4' DDD)
cas no. 53-19-0
2146 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
ethane, hexachloro
cas no. 67-72-1
1055 SAC OV-1 quartz glass bonded phase 0.32
ethane, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (o, \(\mathrm{p}^{\prime}\)-DDE) cas no. 3424-82-6

2072 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
ether, 4-bromophenyl phenyl
cas no. 101-55-3
1652 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & & \\ & \text { standard } & 28\end{array}\)
heptanone, 5-methyl-3-
cas no. 541-85-5
0923 SAC OV-1 quartz glass bonded phase 0.32 50 \(\quad\) hydrogen standard 28
\begin{tabular}{llllllllll}
LTP & Column & Stationary \\
Index & Origin & Phase & Column \\
Material
\end{tabular}\(\quad\) Column Type \begin{tabular}{llll}
ID \\
\((\mathrm{mm})\)
\end{tabular} \begin{tabular}{l}
LEN \\
\((\mathrm{m})\)
\end{tabular} \begin{tabular}{l}
Carrier \\
Gas
\end{tabular}\(\quad\)\begin{tabular}{l}
Sample \\
Type
\end{tabular}\(\quad\)\begin{tabular}{l}
LIT \\
Ref
\end{tabular}
hepten-2-one, 6-methyl-5-
cas no. 110-93-0
0962 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
hexanoic acid, 2-ethyl
cas no. 149-57-5
1117 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
hydrazine, 1,2-diphenyl
cas no. 122-66-7
1588 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.3\end{array}\)
hydrindane, cis- (hexahydroindane)
cas no. 496-10-6
0975 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
indane, 1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methano-1H- (heptachlor epoxide)
cas no. 1024-57-3
2012 SAC OV-1 quartz glass bonded phase 0.32 50 hydrogen standard 28
indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane)
cas no. 57-74-9
\begin{tabular}{llllllllll}
1610 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
1834 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
1874 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
1931 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
1939 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
1989 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2036 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2042 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2063 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2073 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2097 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2116 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2234 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2249 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
indene, \(1,4,5,6,7,8,8\)-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H- (heptachlor) cas no. 76-44-8

1873 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
methane, bis-(methylthio)
cas no. 1618-26-4
0860 SAC \(\begin{array}{llllllll}08 & \text { OV-1 } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard }\end{array}\)
methane, dibromochloro
cas no. 124-48-1
0768 SAC \(\begin{array}{llllllllll} & \text { OV-1 } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
methane, tribromo
cas no. 75-25-2
0852 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & & & \end{array}\)
naphthalene
cas no. 91-20-3
1155 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
1156 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 naphthalene, \(1,2,3,4,10,10\)-hexachloro-1,4,4,5,8,8-hexahydro-exo-1,4-endo-5,8-dimethano (aldrin) cas no. 309-00-2

1946 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 naphthalene, \(1,2,3,4,10,10\)-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano (dieldrin) cas no. 60-57-1

2139 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\) naphthalene, 1-chloro cas no. 90-13-1

1348 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\quad\) standard 28 naphthalene, 2-chloro cas no. 91-58-7
1348 SAC OV-1 quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \begin{tabular}{llllll}
& standard & 28
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
\hline Index & Origin & Phase & Material & & (mm) & (m) & Gas & Type & Ref \\
\hline
\end{tabular}
norbornene-2,3-dimethanol, 1,4,5,6,7,7-hexachloro, cyclic sulphite, 5- (endosulphan)
cas no. 115-29-7
2086 SAC OV-1 quartz glass bonded phase 0.32 50 \(\quad\) hydrogen standard 28
octanol, 1-
cas no. 111-87-5
1056 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
pentadecane, 2,6,10,14-tetramethyl (pristane)
cas no. 1921-70-6
1709 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
pentanol, 2-methyl-2-
cas no. 590-36-3
0723 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
pentanone, 2-
cas no. 107-87-9
0674 SAC OV-
perylene
cas no. 198-55-0
2814 SAC OV-1 quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
phenol
cas no. 108-95-2 0959 SAC OV
phenol, 2,3,4-trichloro cas no. 15950-66-0

1332 SAC OV-
phenol, 2,3,5-trichloro
cas no. 933-78-8
1304 SAC OV-
phenol, 2,3,6-trichloro
cas no. 933-75-5
1346 SAC OV-
phenol, 2,4,5-trichloro cas no. 95-95-4 1327 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & & \text { standard } & 28\end{array}\)
phenol, 2,4-dichloro cas no. 120-83-2

1140 SAC OV-1 phenol, 2,4-dimethyl (m-xylenol) cas no. 105-67-9

1123 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
phenol, 2,4-dinitro cas no. 51-28-5

1435 SAC OV-1 phenol, 2,5-dimethyl (2,5-xylenol) cas no. 95-87-4

1125 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
phenol, 2,6-dimethyl
cas no. 576-26-1
1079 SAC OV-
phenol, 2-amino-4-chloro cas no. 95-85-2 1415 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
phenol, 2-chloro cas no. 95-57-8

0965 SAC OV-1
phenol, 2-sec-butyl-4,6-dinitro (dinoseb) cas no. 88-85-7

1771 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
phenol, 3,4,5-trichloro cas no. 609-19-8

1589 SAC OV 1
quartz glass bonded phase 0.32
\begin{tabular}{llllllllll}
\hline LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref \\
\hline
\end{tabular}
phenol, 3,4-dimethyl (3,4-xylenol)
cas no. 95-65-8
1167 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
phenol, 3-chloro
cas no. 108-43-0
1173 SAC OV-1 quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll}\text { standard } & 28\end{array}\)
phenol, 4-chloro
cas no. 106-48-9 1171 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
phenol, 4-chloro-3-methyl
cas no. 59-50-7
1260 SAC OV-1 quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
phenol, pentachloro
cas no. 87-86-5
1715 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
phosphoric acid, tributyl ester cas no. 126-73-8

1614 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 phosphorodithioic acid, O,O-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) cas no. 2642-71-9

2553 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
phosphorodithioic acid, O,O-dimethyl S-[(4-oxo-1,2,3-benzotriazin-3 (4H)-y1)methyl] ester (azinphos-methyl) cas no. 86-50-0

2464 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28 phosphorodithioic acid, OO-dimethyl S-1,2-dicarbethoxylethyl ester (malathion)
cas no. 121-75-5
1920 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 phosphorothioic acid, O,O-diethyl O-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-y1) ester (coumaphos) cas no. 56-72-4

2654 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
phosphorothioic acid, OO-diethyl O-4-nitrophenyl ester (parathion)
cas no. 56-38-2
1941 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
phosphorothioic acid, OO-diethyl O-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester (diazinon)
cas no. 333-41-5
1766 SAC OV-1 quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllllll} & \text { standard } & 28\end{array}\)
phthalic acid, butyl benzyl ester
cas no. 85-68-7
2287 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
phthalic acid, di(2-ethylhexyl) ester
cas no. 117-81-7
\begin{tabular}{llllllllll}
2504 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2505 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2506 & SAC & OV-1 & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
halic acid, diethyl ester & & & & & & & \\
\begin{tabular}{llllllll}
as no. \(84-66-2\)
\end{tabular} \\
\begin{tabular}{llllll}
1548 & SAC & OV-1 & quartz glass & bonded phase & 0.32 \\
\hline
\end{tabular}
\end{tabular}
phthalic acid, dioctyl ester
cas no. 117-81-7
2506 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.3 & \text { standard } & 28\end{array}\)
picoline, beta (3-methylpyridine)
cas no. 108-99-6
0832 SAC OV-1 quartz glass bonded phase 0.32 50 hydrogen standard 28
picoline, gamma (4-methylpyridine)
cas no. 108-89-4
0832 SAC \(\quad\) OV-1 \(\quad\) quartz glass \(\quad\) bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
propane, 1-nitro
cas no. 108-03-2
0707 SAC OV-1 quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
\begin{tabular}{llllllllll}
\begin{tabular}{l}
LTP \\
Index
\end{tabular} & \begin{tabular}{l}
Column \\
Origin
\end{tabular} & \begin{tabular}{l}
Stationary \\
Phase
\end{tabular} & \begin{tabular}{l}
Column \\
Material
\end{tabular} & Column Type & \begin{tabular}{l}
ID \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{l}
LEN \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{l}
Carrier \\
Gas
\end{tabular} & \begin{tabular}{l}
Sample \\
Type
\end{tabular} & \begin{tabular}{l}
LIT \\
Ref
\end{tabular} \\
\hline
\end{tabular}
propionanilide, \(3^{\prime}, 4^{\prime}\)-dichloro (propanil)
cas no. 709-98-8
1816 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
pyrazine, 2-isobutyl-3-methoxy
cas no. 2468-3-00-9
1160 SAC OV-1
pyrzine, 2-isopropyl-3-methoxy
cas no. 25773-40-4
1076 SAC OV-1
pyrene
cas no. 129-00-0
2061 SAC OV-1 quartz glass bonded phase 0.32 50 hydrogen standard 28
pyridine
cas no. 110-86-1
0732 SAC
thianaphthene
cas no. 95-15-8
1161 SAC toluene, 2,4-dinitro
cas no. 121-14-2
1468 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
toluene, 2,6-dinitro
cas no. 606-20-2
1392 SAC
OV-1 quartz glass bonded phase 0.32
toluene, 2-chloro
cas no. 95-49-8
0931 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
toluene, 2-chloro-4-nitro
cas no. 121-86-8
1316 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
toluene, 3-chloro
cas no. 108-41-8
0932 SAC OV-1 quartz glass bonded phase 0.32 50 \(\quad\) hydrogen standard 28
toluene, 4-chloro
cas no. 106-43-4
0936 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
toluene, 4-chloro-2-nitro
cas no. 89-59-8
1268 SAC OV-1
tolunen, 4-chloro-3-nitro
cas no. 89-60-1
1312 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
toluene, 6-chloro-2-nitro
cas no. 83-42-1
1259 SAC OV-1 quartz glass
toluene, alpha,alpha-dichloro (benzal chloride)
cas no. 98-87-3
1106 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & & & \\ 20\end{array}\)
toluene, alpha-chloro (benzyl chloride)
cas no. 100-44-7
0983 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.3\end{array}\)
toluidine, 2-chloro-p-
cas no. 615-65-6
1252 SAC OV-1 quartz glass bonded phase 0.32 50 hydrogen standard 28
toluidine, 3-chloro-o-
cas no. 87-60-5
1182 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
toluidine, 4-chloro-o
cas no. 95-69-2
1256 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
\begin{tabular}{llllllllll}
\hline LTP & Column & Stationary & Column & \multirow{2}{*}{ Column Type } & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref \\
\hline
\end{tabular}
toluidine, 5-chloro-o-
cas no. 95-79-4
1256 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
toluidine, 6-chloro-m-
cas no. 95-81-8
1201 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
toluidine, 6-chloro-o-
cas no. 87-63-8
1249 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
toluidine, alpha,alpha,alpha-trifluoro-2,6-dinitro- \(\mathrm{N}, \mathrm{N}\)-dipropyl-p- (trifluralin)
cas no. 1582-09-8
1660 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
triazine, 2,4,6-trichloro-1,3,5- (cyanuric chloride)
cas no. 108-77-0
1051 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
triazine-2,4-diamine, 2-chloro- N -ethyl- \(\mathrm{N}^{\prime}\)-(1-methylethyl)-1,3,5- (atrazine)
cas no. 1912-24-9
1699 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
trizine-2,4-diamine, 6 -chloro- \(\mathrm{N}, \mathrm{N}^{\prime}\)-bis(1-methylethyl)-1,3,5- (propazine)
cas no. 139-40-2
1713 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
undecanoic acid, methyl ester
cas no. 111-81-9
1408 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
urea, 3-(3,4-dichlorophenyl)-1-methyoxy-1-methyl (linuron)
cas no. 330-55-2
1903 SAC OV-1 quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll}\text { standard } & 28\end{array}\)

Table 6 Linear Temperature Programmed Retention Indices Truncated Version in Retention Index Order-Polyethylene Glycol Columns
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Retention \\
index
\end{tabular} & Compound name & \begin{tabular}{l}
Stationary \\
phase
\end{tabular} \\
\hline 1000 & methane, trichloro & Superox 0.6 \\
1012 & ethene, tetrachloro & Superox 0.6 \\
1026 & propane, 1,2-dichloro & Superox 0.6 \\
1027 & benzene, methyl, (toluene) & Superox 0.6 \\
1028 & ethene, trichloro & Superox 0.6 \\
1045 & ethane, 1,2-dichloro & Superox 0.6 \\
1066 & propene, 2,3-dichloro & Superox 0.6 \\
1110 & benzene, ethyl & Superox 0.6 \\
1112 & propene, trans-1,3-dichloro & Superox 0.6 \\
1132 & methane, bromodichloro & Superox 0.6 \\
1158 & ether, 2,2-dichloroethyl methyl & Superox 0.6 \\
1169 & propane, 1-chloro-2,3-epoxy (epichlorohydrin) & Superox 0.6 \\
1172 & heptanone, 5-methyl-2- & Superox 0.6 \\
1180 & benzene, 1,2-dimethyl, (o-xylene) & Carbowax 20 M \\
1180 & picoline, alpha (2-methylpyridine) & Superox 0.6 \\
1183 & propene, cis-1,3-dichloro & Superox 0.6 \\
1188 & benzene, chloro & Superox 0.6 \\
1190 & benzene, 1,2-dimethyl, (o-xylene) & Carbowax 20 M \\
1205 & benzene, chloro & Carbowax 20 M \\
1226 & ethane, 1,2-dibromo & Superox 0.6 \\
1236 & ethane, 1,1,2-trichloro & Superox 0.6 \\
1252 & picoline, beta (3-methylpyridine) & Superox 0.6 \\
1256 & methane, bis-(methylthio) & Superox 0.6 \\
1257 & picoline, gamma (4-methylpyridine) & Superox 0.6
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Retention index & Compound name & Stationary phase \\
\hline 1267 & methane, dibromochloro & Superox 0.6 \\
\hline 1276 & formamide, \(\mathrm{N}, \mathrm{N}\)-dimethyl & Superox 0.6 \\
\hline 1277 & toluene, 2-chloro & Superox 0.6 \\
\hline 1288 & toluene, 3-chloro & Superox 0.6 \\
\hline 1291 & toluene, 2-chloro & Carbowax 20M \\
\hline 1291 & toluene, 4-chloro & Superox 0.6 \\
\hline 1301 & toluene, 3-chloro & Carbowax 20M \\
\hline 1304 & toluene, 4-chloro & Carbowax 20M \\
\hline 1314 & hepten-2-one, 6-methyl-5- & Superox 0.6 \\
\hline 1329 & ethanol, 2-chloro & Superox 0.6 \\
\hline 1330 & anisole & Carbowax 20M \\
\hline 1341 & anisole & Carbowax 20M \\
\hline 1357 & ethanol, 2-chloro & Carbowax 20M \\
\hline 1384 & benzene, 1,3-dichloro & Superox 0.6 \\
\hline 1400 & ethane, hexachloro & Superox 0.6 \\
\hline 1407 & methane, tribromo & Superox 0.6 \\
\hline 1410 & pyrazine, 2-isopropyl-3-methoxy & Superox 0.6 \\
\hline 1411 & benzene, 1,4-dichloro & Superox 0.6 \\
\hline 1446 & furfuraldehyde & Carbowax 20M \\
\hline 1452 & benzene, 1,2-dichloro & Superox 0.6 \\
\hline 1457 & furfuraldehyde & Carbowax 20M \\
\hline 1475 & ethane, 1,1,2,2-tetrachloro & Superox 0.6 \\
\hline 1478 & toluene, alpha-chloro (benzyl chloride) & Superox 0.6 \\
\hline 1480 & butadiene, hexachloro & Superox 0.6 \\
\hline 1481 & propanoic acid (propionic acid) & Superox 0.6 \\
\hline 1497 & toluene, alpha-chloro (benzyl chloride) & Carbowax 20M \\
\hline 1514 & propanoic acid, 2-methyl & Superox 0.6 \\
\hline 1528 & phosphonium, (3,4-dichlorobenzyl) triphenyl, chloride (Eulan) & Superox 0.6 \\
\hline 1552 & ethane, 1,2-dihydroxy (ethylene glygol) & Superox 0.6 \\
\hline 1562 & borneol, 2-methyliso & Superox 0.6 \\
\hline 1603 & benzene, 1,2,4-trichloro & Superox 0.6 \\
\hline 1664 & pentadecane, 2,6,10,14-tetramethyl (pristane) & Carbowax 20M \\
\hline 1672 & toluene, alpha,alpha-dichloro (benzal chloride) & Superox 0.6 \\
\hline 1675 & pentadecane, 2,6,10,14-tetramethyl (pristane) & Carbowax 20 M \\
\hline 1683 & benzene, nitro & Superox 0.6 \\
\hline 1690 & naphthalene & Superox 0.6 \\
\hline 1690 & toluene, alpha,alpha-dichloro (benzal chloride) & Carbowax 20M \\
\hline 1709 & naphthalene & Carbowax 20M \\
\hline 1720 & naphthalene & Carbowax 20M \\
\hline 1749 & benzene, 1-methyl-2-iodo & Superox 0.6 \\
\hline 1750 & benzene 1,2,4,5-tetrachloro & Superox 0.6 \\
\hline 1750 & phenol, 2-nitro & Superox 0.6 \\
\hline 1751 & thianaphthene & Superox 0.6 \\
\hline 1768 & anisole, 2,4,6-trichloro & Superox 0.6 \\
\hline 1788 & phenol, 2-chloro & Superox 0.6 \\
\hline 1789 & decalol, trans-1,10-dimethyl-trans-9- (geosmin) & Superox 0.6 \\
\hline 1815 & phenol, 2-chloro & Carbowax 20M \\
\hline 1847 & benzene, 1-chloro-3-nitro & Superox 0.6 \\
\hline 1862 & benzene, 1-chloro-3-nitro & Carbowax 20M \\
\hline 1879 & aniline, 2-chloro & Superox 0.6 \\
\hline 1887 & anisole, 2,3,6-trichloro & Superox 0.6 \\
\hline 1887 & benzene, 1-chloro-4-nitro & Superox 0.6 \\
\hline 1887 & benzene, 3,5-dichloronitro & Superox 0.6 \\
\hline 1893 & toluidine, 3-chloro-o- & Superox 0.6 \\
\hline 1896 & toluene, 6-chloro-2-nitro & Superox 0.6 \\
\hline 1901 & aniline, 2-chloro & Carbowax 20M \\
\hline 1901 & toluene, 4-chloro-2-nitro & Superox 0.6 \\
\hline 1902 & benzene, 1-chloro-4-nitro & Carbowax 20 M \\
\hline 1905 & aniline, 2,6-dichloro & Superox 0.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Retention index & Compound name & Stationary phase \\
\hline 1909 & ionone, beta- & Carbowax 20M \\
\hline 1915 & toluene, 4-chloro-2-nitro & Carbowax 20M \\
\hline 1922 & ionone, beta- & Carbowax 20M \\
\hline 1932 & phenol & Superox 0.6 \\
\hline 1936 & biphenyl & Superox 0.6 \\
\hline 1946 & benzene, 1-chloro-2-nitro & Superox 0.6 \\
\hline 1948 & biphenyl & Carbowax 20M \\
\hline 1957 & toluidine, 3-chloro-p- & Superox 0.6 \\
\hline 1961 & phenol & Carbowax 20M \\
\hline 1962 & naphthalene, 1-chloro & Superox 0.6 \\
\hline 1964 & benzene, 1-chloro-2-nitro & Carbowax 20M \\
\hline 1965 & toluene, 2-chloro-4-nitro & Superox 0.6 \\
\hline 1973 & naphthalene, 2 -chloro & Carbowax 20M \\
\hline 1975 & toluidine, 6-chloro-m- & Superox 0.6 \\
\hline 1977 & aniline, 2-chloro-4-methyl & Carbowax 20M \\
\hline 2010 & phenol, 2,5-dimethyl (2,5-xylenol) & Superox 0.6 \\
\hline 2014 & methenamine & Superox 0.6 \\
\hline 2014 & phenol, 2,4-dimethyl (m-xylenol) & Superox 0.6 \\
\hline 2031 & anisole, 2,3,5,6-tetrachloro & Superox 0.6 \\
\hline 2039 & toluene, 4-chloro-3-nitro & Superox 0.6 \\
\hline 2040 & benzene, 3,4-dichloronitro & Superox 0.6 \\
\hline 2053 & benzene, 2,5-dichloronitro & Superox 0.6 \\
\hline 2064 & benzene, 2,4-dichloronitro & Superox 0.6 \\
\hline 2079 & phosphoric acid, tributyl ester & Superox 0.6 \\
\hline 2084 & benzonitrile, 2,6-dichloro (dichlobenil) & Superox 0.6 \\
\hline 2092 & acenaphthene & Carbowax 20M \\
\hline 2093 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H (chlordane) & Carbowax 20M \\
\hline 2098 & phenol, 2,4-dichloro & Superox 0.6 \\
\hline 2100 & aniline, 4-chloro & Superox 0.6 \\
\hline 2103 & acenaphthene & Carbowax 20M \\
\hline 2110 & aniline, 3-chloro & Superox 0.6 \\
\hline 2123 & acenaphthylene & Superox 0.6 \\
\hline 2127 & toluidine, 6 -chloro-o- & Superox 0.6 \\
\hline 2130 & aniline, 4-chloro & Carbowax 20M \\
\hline 2137 & benzene, 2,3-dichloronitro & Superox 0.6 \\
\hline 2140 & aniline, 3-chloro & Carbowax 20M \\
\hline 2144 & phenol, 3,4-dimethyl (3,4-xylenol) & Superox 0.6 \\
\hline 2145 & toluidine, 5 -chloro-0- & Superox 0.6 \\
\hline 2155 & toluidine, 4-chloro-o- & Superox 0.6 \\
\hline 2160 & aniline, 2-chloro-4-methyl & Superox 0.6 \\
\hline 2164 & toluidine, 2-chloro-p- & Superox 0.6 \\
\hline 2183 & anisole, 2,3,4-trichloro & Superox 0.6 \\
\hline 2193 & benzene, hexachloro (HCB) & Superox 0.6 \\
\hline 2203 & aniline, 2,4-dichloro & Superox 0.6 \\
\hline 2212 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4, 7-methano-1H- (chlordane) & Carbowax 20M \\
\hline 2226 & aniline, 2,3-dichloro & Superox 0.6 \\
\hline 2261 & aniline, 2,3-dichloro & Superox 0.6 \\
\hline 2287 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) & Carbowax 20M \\
\hline 2299 & hydrazine, 1,2-diphenyl & Superox 0.6 \\
\hline 2322 & toluene, 2,6-dinitro & Superox 0.6 \\
\hline 2326 & phenol, 2,3,6-trichloro & Superox 0.6 \\
\hline 2333 & phthalic acid, diethyl ester & Carbowax 20M \\
\hline 2342 & phenol, 4-chloro & Superox 0.6 \\
\hline 2345 & phenol, 3-chloro & Superox 0.6 \\
\hline 2346 & phthalic acid, diethyl ester & Carbowax 20M \\
\hline 2376 & phenol, 4-chloro & Carbowax 20M \\
\hline 2378 & phenol, 3-chloro & Carbowax 20M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Retention index & Compound name & Stationary phase \\
\hline 2382 & phosphorothioic acid, 00-diethyl & \\
\hline & 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl]ester & 6 \\
\hline 2394 & ether, 4-bromophenyl phenyl & Superox 0.6 \\
\hline 2410 & phenol, 4-chloro-3-methyl & Superox 0.6 \\
\hline 2420 & toluene, 2,4-dinitro & Superox 0.6 \\
\hline 2429 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4, 7 -methano- 1 H - (chlordane) & Carbowax 20M \\
\hline 2438 & phenol, 4-chloro-3-methyl & Carbowax 20M \\
\hline 2452 & cyclohexane, alpha-hexachloro (alpha-BHC) & Superox 0.6 \\
\hline 2465 & acetic acid, methyl ester, 2,4-dichlorophenoxy (2,4-D methyl ester) & Superox 0.6 \\
\hline 2469 & aniline, 3,5-dichloro & Superox 0.6 \\
\hline 2505 & indene, \(1,4,5,6,7,8,8\)-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H- (heptachlor) & Superox 0.6 \\
\hline 2510 & indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) & Carbowax 20M \\
\hline 2519 & aniline, 3,4-dichloro & Superox 0.6 \\
\hline 2521 & aniline, N -phenyl & Superox 0.6 \\
\hline 2526 & benzene, 1-chloro-2,4-dinitro & Superox 0.6 \\
\hline 2530 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (Chlordane) & Carbowax 20M \\
\hline 2536 & naphthalene, \(1,2,3,4,10,10\)-hexachloro-1,4,4,5,8,8-hexa-hydro-exo-1,4-endo-5,8-dimethano (aldrin) & Superox 0.6 \\
\hline 2537 & naphthalene, \(1,2,3,4,10,10\)-hexachloro-1,4,4,5,8,8-hexa-hydro-exo-1,4-endo- 5,8 -dimethano (aldrin) & Carbowax 20M \\
\hline 2542 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) & Carbowax 20M \\
\hline 2543 & phenol, 2-amino-4-chloro & Carbowax 20M \\
\hline 2545 & benzene, 1-chloro-2,4-dinitro & Carbowax 20M \\
\hline 2596 & indene, \(1,2,4,5,6,7,8,8\)-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) & Carbowax 20M \\
\hline 2634 & anthracene & Superox 0.6 \\
\hline 2641 & acetic acid, butyl ester, 2,4-dichlorophenoxy (2,4-D butyl ester) & Superox 0.6 \\
\hline 2682 & \begin{tabular}{l}
triazine-2,4-diamine, 6-chloro- \\
\(\mathrm{N}, \mathrm{N}^{\prime}\)-bis(1-methylethyl)-1,3,5- (propazine)
\end{tabular} & Superox 0.6 \\
\hline 2776 & triazine-2,4-diamine, 2 -chloro-N-ethyl-\(\mathrm{N}^{\prime}\)-(1-methylethyl)-1,3,5- (atrazine) & Superox 0.6 \\
\hline 2828 & indane, \(1,4,5,6,7,8,8\)-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methano-1H- (heptachlor epoxide) & Superox 0.6 \\
\hline 2856 & cyclohexane, beta-hexachloro (beta-BHC) & Superox 0.6 \\
\hline 2872 & triazine-2,4-diamine, 6-chloro- \(\mathrm{N}, \mathrm{N}^{\prime}\) diethyl-1,3,5-(simazine) & Superox 0.6 \\
\hline 2879 & norbornene-2,3-dimethanol, 1,4,5,6,7,7-hexachloro, cyclic sulphite, 5 - (endosulphan) & Superox 0.6 \\
\hline 2880 & benzodioxathiepin 3 -oxide, \(6,7,8,9,10,10\)-hexachloro 1,5,5a,6,9,9a-hexahydro-6, 9-methano-2,4,3(endosulfan I) & Superox 0.6 \\
\hline 2904 & ethene,1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (\(\mathrm{o}, \mathrm{p}^{\prime}\)-DDE) & Superox 0.6 \\
\hline 2911 & acetic acid, iso-octyl ester, 2,4-dichlorophenoxy (2,4-D iso-octyl ester) & Superox 0.6 \\
\hline 2956 & benzene, n-butyl, sulphonamide & Superox 0.6 \\
\hline 3103 & ethane, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)
\[
\left(\mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT}\right)
\] & Superox 0.6 \\
\hline 3103 & naphthalene, \(1,2,3,4,10,10\)-hexachloro-6,7-epoxy-1,4,4a, 5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano (dieldrin) & Superox 0.6 \\
\hline 3106 & ethane, 1,1,1-trichloro-2,2-bis (chlorophenyl) (DDT) & Superox 0.6 \\
\hline 3106 & phthalic acid, di(2-ethylhexyl) ester & Superox 0.6 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Retention \\
index
\end{tabular} & Compound name & \begin{tabular}{l}
Stationary \\
phase
\end{tabular} \\
\hline 3106 & \begin{tabular}{l}
phthalic acid, dioctyl ester \\
ethane, 1,1-dichloro-2-(2-chlorophenyl)-2-
\end{tabular} & Superox 0.6 \\
3120 & \begin{tabular}{l}
(4-chlorophenyl) (o, \(\mathrm{p}^{\prime}\)-TDE) \\
ethane, 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,
\end{tabular} & Superox 0.6 \\
3123 & \begin{tabular}{l}
1 -dichloro (2,4' DDD) \\
propionanilide, \(3^{\prime}, 4^{\prime}\)-dichloro (propanil)
\end{tabular} & \begin{tabular}{l}
Superox 0.6 \\
3197
\end{tabular}
\end{tabular}

Table 7 Linear Temperature Programmed Retention Indices Full Version in Alphabetical Order of Compound Name-Polyethylene Glycol Columns

\begin{tabular}{llllllllll}
\hline LTP & Column & Stationary & Column & \multirow{2}{*}{ Column Type } & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref
\end{tabular}
aniline, 2-chloro-4-methyl
cas no. 615-65-6
\begin{tabular}{llllllllll}
1977 & SAC & Carbowax & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2160 & SAC & \begin{tabular}{l}
Superox
\end{tabular} & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
& & 0.6 & & & & & & &
\end{tabular}
aniline, 3,4-dichloro
cas no. 95-76-1
2519 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50\) hydrogen standard 28 0.6
aniline, 3,5-dichloro
cas no. 626-43-7
2469 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
aniline, 3-chloro
cas no. 108-42-9
\begin{tabular}{llllllllll}
2110 & SAC & Superox & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2140 & SAC & \begin{tabular}{llll}
0.6
\end{tabular} & & & & & & & \\
& & Carbowax & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
aniline, 4-chloro
cas no. 106-47-8
\begin{tabular}{llllllllll}
2100 & SAC & Superox & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
2130 & SAC & \begin{tabular}{l}
0.6
\end{tabular} & Carbowax & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard
\end{tabular}
aniline, \(N\)-phenyl
cas no. 122-39-4
2521 SAC Superox quartz glass bonded phase \begin{tabular}{lllllll}
& 0.32 & 50 & hydrogen & standard 28
\end{tabular}
anisole
cas no. 100-66-3
\begin{tabular}{llllllllll}
1330 & SAC & \begin{tabular}{lllll}
Carbowax \\
20 M
\end{tabular} & quartz glass & \begin{tabular}{l}
wall-coated \\
open tubular
\end{tabular} & 0.32 & 50 & hydrogen & standard & 28 \\
1341 & SAC & \begin{tabular}{l}
Carbowax
\end{tabular} & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
anisole, 2,3,4-trichloro
cas no. 54135-80-7
2183 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
anisole, 2,3,5,6-tetrachloro
cas no. 6936-40-9
2031 SAC Supero 0.6
anisole, 2,3,6-trichloro
cas no. 50375-10-5
1887 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
anisole, 2,4,6-trichloro
cas no. 87-40-1
1768 SAC Superox quartz glass bondend phase 0.32 50 \(\quad\) hydrogen standard 28
anthracene
cas no. 120-12-7
2634 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28
benzene, 1,2,4,5-tetrachloro
cas no. 95-94-3
1750 SAC \(\begin{array}{lllllllll} & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
LTP \\
Index
\end{tabular} & \begin{tabular}{l}
Column \\
Origin
\end{tabular} & Stationary Phase & \begin{tabular}{l}
Column \\
Material
\end{tabular} & Column Type & \[
\begin{aligned}
& \text { ID } \\
& (\mathrm{mm})
\end{aligned}
\] & \[
\begin{aligned}
& \text { LEN } \\
& (\mathrm{m})
\end{aligned}
\] & Carrier Gas & \begin{tabular}{l}
Sample \\
Type
\end{tabular} & \[
\begin{aligned}
& \text { LIT } \\
& \text { Ref }
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{benzene, 1,2,4-trichloro cas no. 120-82-1} \\
\hline 1603 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1,2-dichloro cas no. 95-50-1} \\
\hline 1452 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1,2-dimethyl (o-xylene) cas no. 95-47-6} \\
\hline 1180 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & wall-coated open tubular & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 1190 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1,3-dichloro cas no. 541-73-1} \\
\hline 1384 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1,4-dichloro cas no. 106-46-7} \\
\hline 1411 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1-chloro-2,4-dinitro cas no. 121-86-8} \\
\hline 2526 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 2545 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1-chloro-2-nitro cas no. 89-21-4} \\
\hline 1946 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 06
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 1964 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1-chloro-3-nitro cas no. 88-73-3} \\
\hline 1847 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 1862 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{\[
\begin{aligned}
& \text { benzene, 1-chloro-4-nitro } \\
& \text { cas no. 121-73-3 }
\end{aligned}
\]} \\
\hline 1887 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 1902 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 1-methyl-2-iodo cas no. 615-37-2} \\
\hline 1749 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 2,3-dichloronitro cas no. 3209-22-1} \\
\hline 2137 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{benzene, 2,4-dichloronitro cas no. 611-06-3} \\
\hline 2064 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline
\end{tabular}
\begin{tabular}{llllllllll}
LTP & Column & Stationary & Column \\
Index & Origin & Phase & Material & & \begin{tabular}{l}
ID \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{l}
LEN \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{l}
Carrier \\
Gas
\end{tabular} & \begin{tabular}{l}
Sample \\
Type
\end{tabular} & LIT \\
\hline
\end{tabular}
benzene, 2,5-dichloronitro
cas no. 89-61-2
2053 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
benzene, 3,4-dichloronitro
cas no. 99-54-7
2040 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
benzene, 3,5-dichloronitro
cas no. 618-62-2
1887 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
benzene, chloro
cas no. 108-90-7
1188 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
1205 SAC Carbowax quartz glass bonded phase \(\begin{array}{llllllll}0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\)
benzene, ethyl
cas no. 100-41-4
1110 SAC Superox quartz glass bonded phase 0.32 50 0.6
benzene, hexachloro (HCB)
cas no. 118-74-1
2193 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
benzene, methyl, (toluene)
cas no. 108-88-3
1027 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\) 0.6
benzene, n-butyl, sulphonamide
cas no. 3622-84-2
2956 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\) 0.6
benzene, nitro
cas no. 98-95-3
1683 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen standard 28 0.6
benzodioxathiepin 3-oxide, 6,7,8,9,10,10-hexachloro 1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-(endosulfan I) cas no. 959-98-8

2880 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
benzonitrile, 2,6-dichloro (dichlobenil)
cas no. 1194-65-6
2084 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen standard 28 0.6
biphenyl
cas no. 92-52-4
1936 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
1948 SAC Carbowax quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen standard 28 20M
borneol, 2-methyliso
cas no. 2371-42-8
1562 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllllll} & \text { standard } & 28\end{array}\) 0.6
butadiene, hexachloro
cas no. 87-68-3
1480 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll}\text { standard } & 28\end{array}\)
\begin{tabular}{llllllllll}
\hline LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
LTP \\
Index
\end{tabular} & \begin{tabular}{l}
Column \\
Origin
\end{tabular} & \begin{tabular}{l}
Stationary \\
Phase
\end{tabular} & Column Material & Column Type & \[
\begin{aligned}
& \text { ID } \\
& (\mathrm{mm})
\end{aligned}
\] & \[
\begin{aligned}
& \text { LEN } \\
& (\mathrm{m})
\end{aligned}
\] & Carrier Gas & \begin{tabular}{l}
Sample \\
Type
\end{tabular} & \[
\begin{aligned}
& \text { LIT } \\
& \text { Ref }
\end{aligned}
\] \\
\hline 1357 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{```
ethene, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (o,p'-DDE)
 cas no. 3424-82-6
```} \\
\hline 2904 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{ethene, tetrachloro cas no. 127-18-4} \\
\hline 1012 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{ethene, trichloro cas no. 79-01-6} \\
\hline 1028 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{ether, 2,2-dichloroethyl methyl cas no. 34862-07-2} \\
\hline 1158 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{ether, 4-bromophenyl phenyl cas no. 101-55-3} \\
\hline 2394 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{formamide, \(\mathrm{N}, \mathrm{N}\)-dimethyl cas no. 68-12-2} \\
\hline 1276 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{furfuraldehyde cas no. 98-01-1} \\
\hline 1446 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & wall-coated open tubular & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 1457 & SAC & Carbowax 20M & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{heptanone, 5-methyl-3cas no. 541-85-5} \\
\hline 1172 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{hepten-2-one, 6-methyl-5cas no. 110-93-0} \\
\hline 1314 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{hydrazine, 1,2-diphenyl cas no. 122-66-7} \\
\hline 2299 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{```
indane, 1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methano-1H-(heptachlor epoxide)
    cas no. 1024-57-3
```} \\
\hline 2828 & SAC & \[
\begin{aligned}
& \text { Superox } \\
& 0.6
\end{aligned}
\] & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline \multicolumn{10}{|l|}{\[
\begin{aligned}
& \text { indene, } 1,2,4,5,6,7,8,8 \text {-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H-(chlordane) } \\
& \text { cas no. } 57-74-9
\end{aligned}
\]} \\
\hline 2093 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & wall-coated open tubular & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 2212 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & wall-coated open tubular & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 2287 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & wall-coated open tubular & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 2429 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & wall-coated open tubular & 0.32 & 50 & hydrogen & standard & 28 \\
\hline 2510 & SAC & Carbowax
\[
20 \mathrm{M}
\] & quartz glass & wall-coated open tubular & 0.32 & 50 & hydrogen & standard & 28 \\
\hline
\end{tabular}
\begin{tabular}{rlllllllll}
\hline \begin{tabular}{l}
LTP \\
Index
\end{tabular} & \begin{tabular}{l}
Column \\
Origin
\end{tabular} & \begin{tabular}{l}
Stationary \\
Phase
\end{tabular} & \begin{tabular}{l}
Column \\
Material
\end{tabular} & Column Type & \begin{tabular}{l}
ID \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{l}
LEN \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{l}
Carrier \\
Gas
\end{tabular} & \begin{tabular}{l}
Sample \\
Type
\end{tabular} & \begin{tabular}{l}
LIT \\
Ref
\end{tabular} \\
\hline 2530 & SAC & \begin{tabular}{l}
Carbowax \\
20M
\end{tabular} & quartz glass & \begin{tabular}{l}
wall-coated \\
open tubular
\end{tabular} & 0.32 & 50 & hydrogen & standard & 28 \\
2542 & SAC & \begin{tabular}{l}
Carbowax
\end{tabular} & quartz glass & \begin{tabular}{l}
wall-coated \\
open tubular
\end{tabular} & 0.32 & 50 & hydrogen & standard & 28 \\
2596 & SAC & \begin{tabular}{l}
Carbowax \\
Cam
\end{tabular} & quartz glass & \begin{tabular}{l}
wall-coated \\
open tubular
\end{tabular} & 0.32 & 50 & hydrogen & standard & 28 \\
& & & & & &
\end{tabular}
indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H-(heptachlor)
cas no. 76-44-8
\(\begin{array}{lllllllll}2505 & \text { SAC } & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard }\end{array}\) 0.6
ionone, beta-
cas no. 14901-07-6
\begin{tabular}{llllllllll}
1909 & SAC & \begin{tabular}{l}
Carbowax \\
20M
\end{tabular} & quartz glass & \begin{tabular}{l}
wall-coated \\
open tubular
\end{tabular} & 0.32 & 50 & hydrogen & standard & 28 \\
1922 & SAC & \begin{tabular}{l}
Carbowax \\
20M
\end{tabular} & quartz glass & \begin{tabular}{lll}
bonded phase
\end{tabular} & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
methane, bis-(methylthio)
cas no. 1618-26-4
\(\begin{array}{lllllllll}1256 & \text { SAC } & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard }\end{array}\)
methane, bromodichloro
cas no. 75-27-4
\(\begin{array}{llllllll}1132 & \text { SAC } & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen }\end{array}\) standard 28 0.6
methane, dibromochloro
cas no. 124-48-1
\(\begin{array}{lllllllll}1267 & \text { SAC } & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard }\end{array}\) 0.6
methane, tribromo
cas no. 75-25-2
\(\begin{array}{lllllllll}1407 & \text { SAC } & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard }\end{array}\) 0.6
methane, trichloro
cas no. 67-66-3
1000 SAC Superox quartz glass bonded phase 0.3250 hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\) 0.6
methenamine
cas no. 100-97-0
2014 SAC Superox \(\quad\) quartz glass \(\begin{array}{llllll} & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard }\end{array}\) 0.6
naphthalene
cas no. 91-20-3
\begin{tabular}{llllllllll}
1690 & SAC & \begin{tabular}{l}
Superox
\end{tabular} & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
1709 & SAC & \begin{tabular}{l}
0.6
\end{tabular} & \begin{tabular}{l}
Carbowax \\
20 M
\end{tabular} & quartz glass & & & & & \\
wall-coated & 0.32 & 50 & hydrogen & standard & 28 \\
1720 & SAC & \begin{tabular}{l}
Carbowax \\
Copen tub
\end{tabular} & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
naphthalene, \(1,2,3,4,10,10\)-hexachloro-1,4,4,5,8,8-hexahydro-exo-1,4-endo-5,8-dimethano (aldrin) cas no. 309-00-2
\(\begin{array}{lllllllll}2536 & \text { SAC } & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard }\end{array}\)
0.6 Carbowax quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 20M
naphthalene, 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano (dieldrin) cas no. 60-57-1
3103 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\) 0.6
\begin{tabular}{llllllllll}
\hline LTP & Column & Stationary & Column & \multirow{2}{*}{ Column Type } & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref \\
\hline
\end{tabular}
naphthalene, 1-chloro
cas no. 90-13-1
1962 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
naphthalene, 2-chloro
cas no. 91-58-7
1973 SAC Carbowax quartz glass bonded phase \(\begin{array}{lllllll}0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\) 20M
norbornene-2,3-dimethanol, 1,4,5,6,7,7-hexachloro, cyclic sulphite, 5-(endosulphan)
cas no. 115-29-7
2879 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28 0.6
pentadecane, 2,6,10,14-tetramethyl (pristane)
cas no. 1921-70-6
1664 SAC Carbowax quartz glass bonded phase 0.32 50

1675 SAC Carbowax quartz glass wall-coated \(0.32 \quad 50\) hydrogen standard 28
20M open tubular
phenol
cas no. 108-95-2
1 \begin{tabular}{lllllllll}
1932 & SAC & Superox \\
0.6
\end{tabular}\(\quad\) quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28

1961 SAC Carbowax quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\) 20M
phenol, 2,3,6-trichloro
cas no. 933-75-5
2326 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50\) hydrogen standard 28 0.6
phenol, 2,4-dichloro
cas no. 120-83-2
2098 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
phenol, 2,4-dimethyl (m-xylenol)
cas no. 105-67-9
2014 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
phenol, 2,5-dimethyl (2,5-xylenol)
cas no. 95-87-4
2010 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
pehnol, 2-amino-4-chloro
cas no. 95-85-2
2543 SAC Carbowax quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 20M
phenol, 2-chloro
cas no. 95-57-8
1788 SAC \(\quad\) Superox \(\quad\) quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll}\text { standard } & 28\end{array}\)
1815 SAC Carbowax quartz glass bonded phase \(\begin{array}{lllllll}0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\)
phenol, 2-nitro
cas no. 88-75-5
\(17 \begin{array}{lllllllll} & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\) phenol, 3,4-dimethyl (3,4-xylenol)
cas no. 95-65-8
2144 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
\begin{tabular}{llllllllll}
LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref \\
\hline
\end{tabular}
phenol, 3-chloro
cas no. 108-43-0
\begin{tabular}{llllllllll}
2345 & SAC & \begin{tabular}{lllll}
Superox & quartz glass & bonded phase & 0.32 & 50 \\
& & hydrogen & standard & 28 \\
2378 & SAC & \begin{tabular}{l}
Carbowax \\
Cam
\end{tabular} & quartz glass & bonded phase \\
& & 0.32 & 50 & hydrogen
\end{tabular} standard & 28
\end{tabular}
phenol, 4-chloro
cas no. 106-48-9
\begin{tabular}{llllllllll}
2342 & SAC & Superox & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
& & 0.6 & & & & & & & \\
2376 & SAC & \begin{tabular}{l}
Carbowax \\
\\
\end{tabular} & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
phenol, 4-chloro-3-methyl
cas no. 59-50-7
2410 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
0.6

2438 SAC Carbowax quartz glass bonded phase \(\quad 0.32\) 50 \(\quad\) hydrogen \(\begin{array}{lllllll} & \text { standard } & 28\end{array}\) 20M
phosphonium, (3,4-dichlorobenzyl)triphenyl, chloride (Eulan)
cas no. 4386-40-7
1528 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
phosphoric acid, tributyl ester cas no. 126-73-8
2079 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
phosphorothioic acid, OO-diethyl O-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester (diazinon) cas no. 333-41-5 2382 SAC Superox quartz glass bonded phase 0.32 50 \(\quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\) 0.6
phthalic acid, di(2-ethylhexyl) ester cas no. 117-81-7 3106 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
phthalic acid, diethyl ester
cas no. 84-66-2
\begin{tabular}{llllllllll}
2333 & SAC & \begin{tabular}{l}
Carbowax \\
20 M
\end{tabular} & quartz glass & \begin{tabular}{l}
wall-coated \\
open tubular
\end{tabular} & 0.32 & 50 & hydrogen & standard & 28 \\
2346 & SAC & \begin{tabular}{l}
Carbowax \\
20 M
\end{tabular} & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
phthalic acid, dioctyl ester
cas no. 117-71-7
3106 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
picoline, alpha (2-methylpyridine) cas no. 109-96-8

1180 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
picoline, beta (3-methylpyridine)
cas no. 108-99-6
1252 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
picoline, gamma (4-methylpyridine) cas no. 108-89-4 1257 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
propane, 1,2-dichloro cas no. 78-87-5 1026 SAC Superox quartz glass bonded phase 0.32 50 hydrogen standard 28 0.6
\begin{tabular}{llllllllll}
LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref
\end{tabular}
propane, 1-chloro-2,3-epoxy (epichlorohydrin)
cas no. 106-89-8
1169 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28 0.6
propanoic acid (propionic acid)
cas no. 79-09-4
1481 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\)
0.6
propanoic acid, 2-methyl
cas no. 79-31-2
1514 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\) 0.6
propene, 2,3-dichloro cas no. 78-88-6

1066 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll}\text { standard } & 28\end{array}\)
propene, cis-1,3-dichloro
cas no. 542-75-6
1183 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28 0.6
propene, trans-1,3-dichloro
cas no. 542-75-6
1112 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
0.6
propionanilide, \(3^{\prime}, 4^{\prime}\)-dichloro (propanil)
cas no. 709-98-8
3197 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{lllll} & \text { standard } & 28\end{array}\) 0.6
pyrazine, 2-isopropyl-3-methoxy
cas no. 25773-40-4
1410 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
thianaphthene
cas no. 95-15-8
1751 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
toluene, 2,4-dinitro
cas no. 121-14-2
2420 SAC Superox quartz glass bonded phase \(\begin{array}{llllllll} & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
toluene, 2,6-dinitro
cas no. 606-20-2
2322 SAC Superox quartz glass bonded phase \(\begin{array}{lllllll}0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
toluene, 2-chloro
cas no. 95-49-8
1277 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
1291 SAC Carbowax quartz glass bonded phase \(\begin{array}{llllllll}0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\)
toluene, 2-chloro-4-nitro
cas no. 121-86-8
1965 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 toluene, 3-chloro
cas no. 108-41-8
1288 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28

1301 SAC Carbowax quartz glass bonded phase \(\begin{array}{lllllll} & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
\begin{tabular}{llllllllll}
\hline LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
Index & Origin & Phase & Material & & \((\mathrm{mm})\) & \((\mathrm{m})\) & Gas & Type & Ref \\
\hline
\end{tabular}
toluene, 4-chloro
cas no. 106-43-4 1291 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) 0.6 1304 SAC Carbowax quartz glass bonded phase \(\begin{array}{lllllll}0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\) 20M
toluene, 4-chloro-2-nitro
cas no. 89-59-8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1901 & SAC & Superox & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline & & 0.6 & & & & & & & \\
\hline \multirow[t]{2}{*}{1915} & \multirow[t]{2}{*}{SAC} & Carbowax & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
\hline & & 20M & & & & & & & \\
\hline
\end{tabular}
toluene, 4-chloro-3-nitro
cas no. 89-60-1 2039 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28 0.6
toluene, 6-chloro-2-nitro
cas no. 83-42-1
1896 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\) 0.6
toluene, alpha, alpha-dichloro (benzal chloride)
cas no. 98-87-3
\begin{tabular}{llllllllll}
1672 & SAC & Superox & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28 \\
& & 0.6 & & & & & & & \\
1690 & SAC & Carbowax & quartz glass & bonded phase & 0.32 & 50 & hydrogen & standard & 28
\end{tabular}
toluene, alpha-chloro (benzyl chloride)
cas no. 100-44-7
1478 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.38\end{array}\)
1497 SAC Carbowax quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen standard 28
toluidine, 2-chloro-p-
cas no. 615-61-6
2164 SAC Superox quartz glass bonded phase \(\quad 0.32\) 50 hydrogen standard 28
toluidine, 3-chloro-0-
cas no. 87-60-5
1893 S
1893 SAC
Superox quartz glass bonded phase 0.3250 0.6
toluidine, 3-chloro-p-
cas no. 95-74-9
1957 SuC \(\begin{array}{lllllllll} & \text { Superox } & \text { quartz glass } & \text { bonded phase } & 0.32 & 50 & \text { hydrogen } & \text { standard } & 28\end{array}\)
toluidine, 4-chloro-o-
cas no. 95-69-2
2155 SAC Superox quartz glass bonded phase \(0.32 \quad 50\) hydrogen standard 28
toluidine, 5 -chloro-o-
cas no. 95-79-4
2145 SAC Superox quartz glass bonded phase \(\quad 0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & \text { standard } & 28\end{array}\)
toluidine, 6-chloro-m-
cas no. 95-81-8
1975 SAC Superox quartz glass bonded phase \(0.32 \quad 50 \quad\) hydrogen \(\begin{array}{llllll} & 0.3\end{array}\) 0.6
toluidine, 6-chloro-o-
cas no. 87-63-8
2127 SAC Superox quartz glass bonded phase \(\begin{array}{lllllll} & 0.32 & 50 & \text { hydrogen } & \text { standard } 28\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LTP & Column & Stationary & Column & Column Type & ID & LEN & Carrier & Sample & LIT \\
\hline Index & Origin & Phase & Material & & (mm) & (m) & Gas & Type & Ref \\
\hline
\end{tabular}

Figure 1 LTPRI test mixture chromatographed on PS 255

Unmarked peaks are impurities/septum bleed etc.
n

\(\pi\)

58

\section*{Department of the Environment}

\section*{Standing Committee of Analysts}

Members assisting with the production of this booklet.
\begin{tabular}{llll}
B T Ashurst & 2 & R Mackison & 2 \\
F B Basketter & 1 & Dr P J Matthews & 2 \\
Dr G A Best & 1 & J C McCullins & 1 \\
J Betterley & 2 & D Meek & \(2,3,4\) \\
P Chave & 1 & Dr R Mounce & 4 \\
Dr G W Clayfield & 1 & - P J Morries & 1,3 \\
B E P Clement & 1 & D Myles (deceased) & 1 \\
Dr R L Cooper & 1 & Dr H A Painter & 1,2 \\
Dr B T Croll & \(1,2,3\) & J F Palframan & 2 \\
Dr J V Dadswell & 1 & Dr S J Patterson & 1 \\
I W Davies & 4 & J M Perkin & 2 \\
E A Deal & 4 & L R Pittwell & \(1,2,3\) \\
T A Dick & 1 & Dr J E Portmann & 1 \\
M Fielding & 2 & J Prest & 2 \\
M G Firth & 2 & L D Purdie & 1 \\
M C Finniear & 1 & B D Ravenscroft & 1 \\
Dr J Gardener & 1 & L A Richards & 1 \\
Dr M Gardener & 1 & M R Richardson & 2 \\
Dr R Gardiner & 1 & Prof J P Riley & 1 \\
J R Garlick & 1 & S Scott & 2 \\
G I Goodfellow & 1 & Dr D Taylor & 1 \\
T R Graham & 1 & Dr K C Thompson & 1 \\
K Guiver & N J Truslove & 2 \\
E Hodges & 1 & Dr A M Ure & 1 \\
G W Horne & 1 & A Waggot & 2,4 \\
Dr D T E Hunt & 1 & P J Walker & 1 \\
M R Hurcombe & 1 & B T Whitham & 1 \\
Dr J G Jones & 1 & P J Whittle & 1 \\
J S Leahy & 1 & Dr D A Williams & 1 \\
N de-J Loaring & 1 & Dr R Wood MAFF & 1 \\
P J G Long & 2 & Dr A Woodbridge & 2 \\
Main Committee member 1 & & & Origination of the Project \\
Organic Working Group 2 & & Programme Development & \\
& & & 4
\end{tabular}
(Note the Main Committee listings include past members who took part in the inception of the project).
Thanks also to IBM (UK), HNU Nordion Instruments Ltd., Finland and the Health and Safety Executive for information, and to British Gas plc and British Petroleum for checking programmes.

HMSO publications are available from:
HMSO Publications Centre
(Mail and telephone orders only)
PO Box 276, London, SW8 5DT
Telephone orders 01-873 9090
General enquiries 01-873 0011
(queuing system in operation for both numbers)

\section*{HMSO Bookshops}

49 High Holborn, London, WC1V 6HB 01-873 0011 'Counter service only)
258 Broad Street, Birmingham, B1 2HE 021-643 3740
Southey House, 33 Wine Street, Bristol, BS1 2BO (0272) 264306
9-21 Princess Street, Manchester, M60 8AS 061-834 7201
80 Chichester Street, Belfast, BT1 4JY (0232) 238451
71 Lothian Road, Edinburgh, EH3 9AZ 031-228 4181

\section*{HMSO's Accredited Agents}
(see Yellow Pages)
and through good booksellers```

[^0]: 1.8 Time for analysis About one hour per sample, but very depen-
 dent on computer facilities available.

